Advertisement

Plasmonics

, Volume 13, Issue 3, pp 1081–1088 | Cite as

Multi-Band Plasmonic Platform Utilizing UT-Shaped Graphene Antenna Arrays

  • Yasa EkşioğluEmail author
  • Arif E. Cetin
  • Habibe Durmaz
Article
  • 358 Downloads

Abstract

In this work, we introduce a plasmonic platform based on UT-shaped graphene antenna arrays. The proposed multi-resonant platform shows three different resonances, which can be independently tuned. The physical origin of these modes is shown with finite-difference time-domain (FDTD) nearfield distribution analyses, which are used to statically tune each resonance wavelength via the geometrical parameters, corresponding to different nearfield localization. We achieve statistical tuning of multiple resonances also by changing the number of graphene layers. Another static tuning of the optical response of the UT-shaped graphene antenna is achieved via the chemical potential and the relaxation time.

Keywords

Surface plasmon Graphene plasmonics Multi-band 

Notes

Acknowledgements

Yasa Ekşioğlu acknowledges the support of Istanbul Kemerburgaz University Scientific Research Foundation project No: PB2016-I-012.

References

  1. 1.
    Stern EA, Ferrell RA (1960) Surface plasma oscillations of a degenerate electron gas. Phys Rev 120:130–136CrossRefGoogle Scholar
  2. 2.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193CrossRefGoogle Scholar
  3. 3.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New YorkCrossRefGoogle Scholar
  4. 4.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Field MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670CrossRefGoogle Scholar
  5. 5.
    Kundu J, Le F, Nordlander P, Halas NJ (2008) Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates. Chem Phys Lett 452:115–119CrossRefGoogle Scholar
  6. 6.
    Adato R, Yanik AA, Amsden JJ, Kaplan DL, Omenetto FG, Hong MK, Erramili S, Altug H (2009) Ultra-sensitive vibrational spectroscopy of proteinmonolayers with plasmonic nanoantenna arrays. Proc Natl Acad Sci U S A 106:19227–19232CrossRefGoogle Scholar
  7. 7.
    Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871CrossRefGoogle Scholar
  8. 8.
    Artar A, Yanik AA, Altug H (2009) Fabry–Pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing. Appl Phys Lett 95:051105CrossRefGoogle Scholar
  9. 9.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213CrossRefGoogle Scholar
  10. 10.
    Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6:749–758CrossRefGoogle Scholar
  11. 11.
    Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8:1086–1101CrossRefGoogle Scholar
  12. 12.
    Garcia de Abajo FJ (2014) Graphene plasmonics: challenges and opportunities. ACS Photon 1:35–152CrossRefGoogle Scholar
  13. 13.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  14. 14.
    Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622CrossRefGoogle Scholar
  15. 15.
    Song J, Zhang L, Xue Y, Yang Q, Wu S, Xia F, Zhang C, Zhong YL, Zhang Y, Teng J, Premaratne M, Qiu CW, Bao Q (2016) Efficient excitation of multiple plasmonic modes on three-dimensional graphene: an unexplored dimension. ACS Photonics 3:1986–1992CrossRefGoogle Scholar
  16. 16.
    Liu PQ, Valmorra F, Maissen C, Faist J (2015) Electrically tunable graphene anti-dot array terahertz plasmonic crystals exhibiting multi-band resonances. Optica 2:135–140CrossRefGoogle Scholar
  17. 17.
    Jablan M, Buljan H, Soljačić M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80:245435CrossRefGoogle Scholar
  18. 18.
    Gao W, Shi G, Jin Z, Shu J, Zhang Q, Vajtai R, Ajayan PM, Kono J, Xu Q (2013) Excitation and active control of propagating surface plasmon polaritons in graphene. Nano Lett 13:3698–3702CrossRefGoogle Scholar
  19. 19.
    Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F (2013) Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photonics 7:394–399CrossRefGoogle Scholar
  20. 20.
    Gao W, Shu J, Qiu C, Xu Q (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6:7806–7813CrossRefGoogle Scholar
  21. 21.
    Nene P, Strait J, Chan WM, Manolatou C, Kevek JW, Tiwari S, McEuen PL, Rana F (2013) Graphene micro- and nano-plasmonics. QTh1B.2 CLEO:2013 OSAGoogle Scholar
  22. 22.
    Li HJ, Zhai X, Sun B, Huang ZR, Wang LL (2015) A graphene-based bandwidth-tunable mid-infrared ultra-broadband plasmonic filter. Plasmonics 10:765–771CrossRefGoogle Scholar
  23. 23.
    Said FA, Menon PS, Nawi MN, Md Zain AR, Jalar A, Majlis BY (2016) Copper-graphene SPR-based biosensor for urea detection. IEEE-ICSE Proc. doi: 10.1109/SMELEC.2016.7573642
  24. 24.
    Lee JK, Kim H (2016) Mid-infrared plasmonic tuning via nanogap control in periodic multilayer graphene nanoribbons. Opt Mater 54:22–25CrossRefGoogle Scholar
  25. 25.
    Xia F, Mueller T, Lin YM, Valdes-Garcia A, Avouris P (2009) Ultrafast graphene photodetector. Nature NanoTech 4:839–843CrossRefGoogle Scholar
  26. 26.
    Freitag M, Low T, Zhu W, Yan H, Xia F, Avouris P (2013) Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat Commun 4:1951CrossRefGoogle Scholar
  27. 27.
    Cai X, Sushkov AB, Jadidi MM, Nyakiti LO, Myers-Ward RL, Gaskill DK, Murphy TE, Fuhrer MS, Drew HD (2015) Plasmon-enhanced terahertz photodetection in graphene. Nano Lett 15:4295–4302CrossRefGoogle Scholar
  28. 28.
    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6:630–634CrossRefGoogle Scholar
  29. 29.
    Sensale-Rodriguez B, Yan R, Zhu M, Jena D, Liu L, Xing HG (2012) Efficient terahertz electro-absorption modulation employing graphene plasmonic structures. Appl Phys Lett 101:261115CrossRefGoogle Scholar
  30. 30.
    Otsuji T, Popov V, Ryzhii V (2014) Active graphene plasmonics for terahertz device applications. J Phys D Appl Phys 47:094006CrossRefGoogle Scholar
  31. 31.
    Brar VW, Sherrott MC, Jang MS, Kim S, Kim L, Choi M, Sweatlock LA, Atwater HA (2015) Electronic modulation of infrared radiation in graphene plasmonic resonators. Nat Commun 6:7032CrossRefGoogle Scholar
  32. 32.
    Wang X, Zhi L, Mullen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327CrossRefGoogle Scholar
  33. 33.
    Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo FJ, Pruneri V, Altug H (2015) Mid-infrared plasmonic biosensing with graphene. Sci Rep 349:165–168Google Scholar
  34. 34.
    Zhao Y, Hu X, Guanxiong C, Xuanru Z, Ziqi T, Junhua C, Rodney SR, Yanwu Z, Yalin L (2013) Infrared biosensors based on graphene plasmonics: modeling. Physical Chemistry Chem Phys 15:17118–17125CrossRefGoogle Scholar
  35. 35.
    Falkovsky L, Pershoguba S (2007) Optical far-infrared properties of a graphene monolayer and multilayer. Phys Rev B 76:1–4CrossRefGoogle Scholar
  36. 36.
    Hanson GW (2008) Dyadic Green’s functions for an anisotropic, nonlocal model of biased graphene. IEEE Trans Antennas Propag 56:747–757CrossRefGoogle Scholar
  37. 37.
    Falkovsky LA (2008) Optical properties of graphene. J Phys Conf Ser 129:012004CrossRefGoogle Scholar
  38. 38.
    Gan CH, Chu HS, Li EP (2012) Synthesis of highly confined surface plasmon modes with doped graphene sheets in the mid infrared and terahertz frequencies. Phys Rev B 85:125431CrossRefGoogle Scholar
  39. 39.
    Ke S, Wang B, Huang H, Long H, Wang K, Lu P (2015) Plasmonic absorption enhancement in periodic cross-shaped graphene arrays. Opt Express 23:8888–8900CrossRefGoogle Scholar
  40. 40.
    Jablan M, Buljan H, Soljačić M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80:245435CrossRefGoogle Scholar
  41. 41.
    Wunsch B, Stauber T, Sols F, Guinea F (2006) Dynamical polarization of graphene at finite doping. New J Phys 8:318CrossRefGoogle Scholar
  42. 42.
    Hwang EH, S DS (2007) Dielectric function, screening, and plasmons in two-dimensional graphene. Phys Rev B 75: 205418Google Scholar
  43. 43.
    Koppens FH, Chang DE, de Abajo FJG (2011) Graphene plasmonics: a platform for strong light matter interactions. Nano Lett 11:3370–3377CrossRefGoogle Scholar
  44. 44.
    Finite-difference-time-domain package, Lumerical FDTD Solutions (2014) [Online]. Available: www.lumerical.com
  45. 45.
    Cetin AE, Turkmen M, Aksu S, Altug H (2012) Nanoparticle-based metamaterials as multiband Plasmonic resonator antennas. IEEE Trans Nano Technol 11:208–212CrossRefGoogle Scholar
  46. 46.
    Novotny L (2007) Effective wavelength scaling for optical antennas. Phys Rev Lett 98:266802CrossRefGoogle Scholar
  47. 47.
    Liberman V, Adato R, Jeys TH, Saar BG, Erramilli S, Altug H (2012) Rational design and optimization of plasmonic nanoarrays for surface enhanced infrared spectroscopy. Opt Express 20:11953–11967CrossRefGoogle Scholar
  48. 48.
    Cubukcu E, Capasso F (2009) Optical nanorod antennas as dispersive one-dimensional Fabry–Pérot resonators for surface plasmons. Appl Phys Lett 95:201101CrossRefGoogle Scholar
  49. 49.
    Krasavin AV, Zayats AV (2008) Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides. Phys Rev B 78:045425CrossRefGoogle Scholar
  50. 50.
    Holmgaard T, Bozhevolnyi SI (2007) Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys Rev B 75:245405CrossRefGoogle Scholar
  51. 51.
    Wu L, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18:14395–14400CrossRefGoogle Scholar
  52. 52.
    Chu HS, Choon HG (2013) Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays. Appl Phys Lett 102:231107CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringIstanbul Kemerburgaz UniversityIstanbulTurkey
  2. 2.Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Electrical and Electronics EngineeringRecep Tayyip Erdoğan University, Zihni Derin YerleşkesiRizeTurkey

Personalised recommendations