, Volume 13, Issue 3, pp 1043–1048 | Cite as

Tunable Nearly Perfect Absorber Based on Graphene Metamaterials at the Mid-Infrared Region

  • Li-Ping Sun
  • Xiang Zhai
  • Qi Lin
  • Gui-Dong Liu
  • Ling-Ling Wang


We propose the idea of a tunable nearly perfect absorber based on graphene metamaterial consisting of a periodically arranged graphene ribbons (bright mode) and the inverse slots in the thin graphene film (dark mode). The absorption peak has a narrow linewidth of 160 nm and the absorbance approaching to 97.12%. The fascinating absorption feature not merely due to plasmonically induced absorption arising from destructive interference between the bright and dark mode but also the metamaterial absorption. We have testified numerically that the electric fields are highly confined inside the slot. The mid-IR absorption spectrum can be dynamically tuned by a small change in the chemical potential of graphene, in addition to varying geometrical parameters. Our paper considers a situation that represents an intermediate plasmonic coupling regime, between near-field and far-field coupling. Such absorber possesses potential for applications in mid-IR nanophotonic devices.


Perfect absorber Field enhancement Graphene metamaterial Surface plasmon polaritons Mid-infrared 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 61505052, 11074069, 61176116).


  1. 1.
    Wang B, Zhang X, García-Vidal FJ et al (2012) Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays [J]. Phys Rev Lett 109(7):073901CrossRefGoogle Scholar
  2. 2.
    Garcia-Pomar JL, Nikitin AY, Martin-Moreno L (2013) Scattering of graphene plasmons by defects in the graphene sheet [J]. ACS Nano 7(6):4988–4994CrossRefGoogle Scholar
  3. 3.
    Ke S, Wang B, Huang H et al (2015) Plasmonic absorption enhancement in periodic cross-shaped graphene arrays [J]. Opt Express 23(7):8888–8900CrossRefGoogle Scholar
  4. 4.
    Grigorenko A, Polini M, Novoselov K (2012) Graphene plasmonics. Nat Photonics 6(11):749–758CrossRefGoogle Scholar
  5. 5.
    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A (2014) Two-dimensional material nanophotonics. Nat Photonics 8(12):899–907CrossRefGoogle Scholar
  6. 6.
    Avouris P, Freitag M (2014) Graphene photonics, plasmonics, and optoelectronics. IEEE J Sel Top Quantum Electron 20(1):6000112CrossRefGoogle Scholar
  7. 7.
    Javier F, Abajo G (2014) Graphene plasmonics: challenges and opportunities. ACS Photon 1(3):135–152CrossRefGoogle Scholar
  8. 8.
    Wang B, Zhang X, Yuan X, Teng J (2012) Optical coupling of surface plasmons between graphene sheets. Appl Phys Lett 100(13):131111CrossRefGoogle Scholar
  9. 9.
    Wang B, Huang H, Wang K, Long H, Lu P (2014) Plasmonic routing in aperiodic graphene sheet arrays. Opt Lett 39(16):4867–4870CrossRefGoogle Scholar
  10. 10.
    Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films [J]. Science 306(5696):666–669CrossRefGoogle Scholar
  11. 11.
    Xia F, Yan H, Avouris P (2013) The interaction of light and graphene: basics, devices, and applications [J]. Proc IEEE 101(7):1717–1731CrossRefGoogle Scholar
  12. 12.
    Vakil A, Engheta N (2013) Transformation optics using graphene [J]. Science 332(6035):1291–1294CrossRefGoogle Scholar
  13. 13.
    Zhao B, Zhao JM, Zhang ZM (2014) Enhancement of near-infrared absorption in graphene with metal gratings [J]. Appl Phys Lett 105(3):031905CrossRefGoogle Scholar
  14. 14.
    Xia SX, Zhai X, Wang LL et al (2016) Excitation of crest and trough surface plasmon modes in in-plane bended graphene nanoribbons [J]. Opt Express 24(1):427–436CrossRefGoogle Scholar
  15. 15.
    Shang X, Zhai X, Li X et al (2016) Realization of graphene-based tunable Plasmon-induced transparency by the dipole-dipole coupling [J]. Plasmonics 11(2):419–423CrossRefGoogle Scholar
  16. 16.
    Sun B, Wang LL, Zhai X et al (2016) Manipulating plasmonic waves transporting on graphene with graphene nanoribbon [J]. Opt Laser Technol 64:101–105CrossRefGoogle Scholar
  17. 17.
    Lin Q, Zhai X, Wang L et al (2015) Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings [J]. Europhys Lett 111(3):34004CrossRefGoogle Scholar
  18. 18.
    Liu G, Zhai X, Wang LL et al (2016) Actively tunable Fano resonance based on a T-shaped graphene Nanodimer [J]. Plasmonics 11(2):381–387CrossRefGoogle Scholar
  19. 19.
    Luo X, Zhai X, Wang LL et al (2015) Narrow-band Plasmonic filter based on graphene waveguide with asymmetrical structure [J]. Plasmonics 10(6):1427–1431CrossRefGoogle Scholar
  20. 20.
    Gao W, Shu J, Qiu C et al (2012) Excitation of plasmonic waves in graphene by guided-mode resonances [J]. ACS Nano 6(9):7806–7813CrossRefGoogle Scholar
  21. 21.
    Jablan M, Buljan H, Soljačić M (2009) Plasmonics in graphene at infrared frequencies [J]. Phys Rev B 80(24):245435CrossRefGoogle Scholar
  22. 22.
    Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402CrossRefGoogle Scholar
  23. 23.
    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348CrossRefGoogle Scholar
  24. 24.
    Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2:517–521CrossRefGoogle Scholar
  25. 25.
    Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96(25):251104CrossRefGoogle Scholar
  26. 26.
    Wang J, Fan C, Ding P, He J, Cheng Y, Hu W, Cai G, Liang E, Xue Q (2012) Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency. Opt Express 20(14):14871–14878CrossRefGoogle Scholar
  27. 27.
    Ding P, Liang E, Cai G, Hu W, Fan C, Xue Q (2011) Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials. J Opt 13(7):075005CrossRefGoogle Scholar
  28. 28.
    Li Z, Butun S, Aydin K (2014) Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. ACS Nano 8(8):8242–8248CrossRefGoogle Scholar
  29. 29.
    Meng L, Zhao D, Ruan Z, Li Q, Yang Y, Qiu M (2014) Optimized grating as an ultra-narrow band absorber or plasmonic sensor. Opt Lett 39(5):1137–1140CrossRefGoogle Scholar
  30. 30.
    Moskovits M (1985) Surface-enhanced spectroscopy [J]. Rev Mod Phys 57(3):783CrossRefGoogle Scholar
  31. 31.
    Ju L, Geng B, Horng J et al (2011) Graphene plasmonics for tunable terahertz metamaterials [J]. Nat Nanotechnol 6(10):630–634CrossRefGoogle Scholar
  32. 32.
    Schwierz F (2011) Graphene transistors [J]. Nat Nanotechnol 5(7):487–496CrossRefGoogle Scholar
  33. 33.
    Liu M, Yin X, Ulin-Avila E et al (2011) A graphene-based broadband optical modulator [J]. Nature 474(7349):64–67CrossRefGoogle Scholar
  34. 34.
    Taubert R, Hentschel M, Giessen H (2011) Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis [J]. J Opt Soc Am B 30(12):3123–3134CrossRefGoogle Scholar
  35. 35.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles [M]. Wiley, New YorkGoogle Scholar
  36. 36.
    Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101(4):047401CrossRefGoogle Scholar
  37. 37.
    Jin XR, Park J, Zheng H et al (2011) Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling [J]. Opt Express 19(22):21652–21657CrossRefGoogle Scholar
  38. 38.
    Wang X, Chen C, Pan L, et al (2016) A graphene-based Fabry-Pérot spectrometer in mid-infrared region [J]. Sci Rep 6:32616Google Scholar
  39. 39.
    Thongrattanasiri S, Koppens FHL, de Abajo FJG (2012) Complete optical absorption in periodically patterned graphene [J]. Phys Rev Lett 108(4):047401CrossRefGoogle Scholar
  40. 40.
    Mak KF, Sfeir MY, Wu Y et al (2008) Measurement of the optical conductivity of graphene [J]. Phys Rev Lett 101(19):196405CrossRefGoogle Scholar
  41. 41.
    Albooyeh M, Simovski CR (2012) Huge local field enhancement in perfect plasmonic absorbers. Opt Express 20(20):21888–21895CrossRefGoogle Scholar
  42. 42.
    Grosjean T, Mivelle M, Baida FI, Burr GW, Fischer UC (2011) Diabolo nanoantenna for enhancing and confining the magnetic optical field. Nano Lett 11(3):1009–1013CrossRefGoogle Scholar
  43. 43.
    Koo S, Kumar MS, Shin J, Kim DS, Park N (2009) Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime. Phys Rev Lett 103(26):263901CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Li-Ping Sun
    • 1
  • Xiang Zhai
    • 1
  • Qi Lin
    • 1
  • Gui-Dong Liu
    • 1
  • Ling-Ling Wang
    • 1
  1. 1.School of physics and Microelectronic and Key Laboratory for Micro-Nano Physics and Technology of Hunan ProvinceHunan UniversityChangshaChina

Personalised recommendations