Skip to main content
Log in

Polarization Characteristics of High-Birefringence Photonic Crystal Fiber Selectively Coated with Silver Layers

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The polarization characteristics of high-birefringence photonic crystal fiber (HB-PCF) selectively coated with silver layers are numerically investigated using the full-vector finite element method (FEM). The fundamental mode coupling properties and polarization splitting effect are discussed in detail. Results show that the resonance wavelength, resonance strength, and splitting distance between two polarized modes can be adjusted significantly by changing the fiber structure, the diameter of silver rings, and the thickness of silver layers. A single-polarization filter at 1310 nm bands is proposed with the corresponding loss 500 dB/cm and full width half maximum (FWHM) only 23 nm. This work is very helpful for further studies in polarization-dependent wavelength-selective applications or other fiber-based plasmonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu Q, Li SG, Li H, Zi JC, Zhang W, Fan ZK, An GW, Bao YJ (2015) Broadband single-polarization photonic crystal fiber based on surface plasmon resonance for polarization filter. Plasmonics 10:931–939

    Article  Google Scholar 

  2. Zhang HW, Lu Y, Duan LC, Zhao ZQ, Shi W, Yao JQ (2014) Intracavity absorption multiplexed sensor network based on dense wavelength division multiplexing filter. Opt Express 22:24545–24550

    Article  Google Scholar 

  3. Yang XC, Lu Y, Liu BL, Yao JQ (2016) Temperature sensor based on photonic crystal fiber filled with liquid and silver nanowires. IEEE Photonics Journal 8:1–10

    Google Scholar 

  4. Chen HL, Li SG, Li JS, Fan ZK (2015) Magnetic field sensor based on magnetic fluid selectively infilling photonic crystal fibers. IEEE Photonics Tech L 27:717–720

    Article  Google Scholar 

  5. Tyagi HK, Lee HW, Uebel P, Schmidt MA, Joly N, Scharrer N, Russell PS (2010) Plasmon resonances on gold nanowires directly drawn in a step-index fiber. Opt Lett 35:2573–2575

    Article  CAS  Google Scholar 

  6. Schmidt MA, Russell PS (2008) Long-range spiralling surface plasmon modes on metallic nanowires. Opt Express 16:13617–13623

    Article  CAS  Google Scholar 

  7. Xue JR, Li SG, Xiao YZ, Qin W, Xin XJ, Zhu XP (2013) Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance. Opt Express 21:13733–13740

    Article  Google Scholar 

  8. Nagasaki A, Saitoh K, Koshiba M (2011) Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes. Opt Express 19:3799–3808

    Article  CAS  Google Scholar 

  9. Li H, Li SG, Chen HL, Li JS, An GW, Zi JC (2016) A polarization filter based on photonic crystal fiber with asymmetry around gold-coated holes. Plasmonics 11:1–6

    Article  Google Scholar 

  10. Liu Q, Li SG, Li JS, Dou C, Wang XY, Wang GY, Shi M (2016) Tunable fiber polarization filter by filling different index liquids and gold wire into photonic crystal fiber. IEEE J Lightwave Technol 34:2484–2490

    Article  CAS  Google Scholar 

  11. Shi FK, Zhou GY, Li DM, Peng L, Hou ZY, Xia CM (2015) Surface plasmon mode coupling in photonic crystal fiber symmetrically filled with Ag/Au alloy wires. Plasmonics 10:335–340

    Article  CAS  Google Scholar 

  12. Ghoumid K, Mekaoui S, Ouariach A, Cheikh R, Nougaoui A, Gharbi T (2015) Tunable filter based on cavity electro-optic modulation for DWDM applications. Opt Commun 334:332–335

    Article  CAS  Google Scholar 

  13. Mahdiraji GA, Chow DM, Sandoghchi SR, Amirkhan F, Dermosesian E, Yeo KS (2014) Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study. Fiber Integrated Opt 33:85–104

    Article  Google Scholar 

  14. Zhang X, Wang R, Cox F, Kuhlmey BT, Large MCJ (2007) Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers. Opt Express 15:16270–16278

    Article  CAS  Google Scholar 

  15. Peng Y, Hou J, Zhang Y, Huang ZH, Xiao R, Lu QS (2013) Temperature sensing using the bandgap-like effect in a selectively liquid-filled photonic crystal fiber. Opt Lett 38:263–265

    Article  Google Scholar 

  16. Akowuah EK, Gorman T, Ademgil H, Haxha S, Robinson GK, Oliver JV (2012) Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J Quantum Electron 48(11):1403–1410

    Article  CAS  Google Scholar 

  17. Chen WQ, Thoreson MD, Ishii S, Kildishev AV, Shalaev VM (2010) Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. Opt Express 18:5124–5134

    Article  CAS  Google Scholar 

  18. Chen L, Zhang WG, Zhang Z, Liu YJ, Sieg J, Zhang LY, Zhou Q, Wang L, Wang B, Yan TY (2014) Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance. IEEE Photonics Journal 4:1–9

    Google Scholar 

  19. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  20. Lee HW, Schmidt MA, Russell PS (2012) Excitation of a nanowire “molecule” in gold-filled photonic crystal fiber. Opt Lett 37:2946–2948

    Article  CAS  Google Scholar 

  21. Zhang ZH, Shi YF, Bian BM, Lu J (2008) Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding. Opt Express 16:1915–1922

    Article  Google Scholar 

  22. Xue JR, Li SG, Xiao YZ, Qin W, Xin WJ, Zhu XP (2013) Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance. Opt Express 21:13722–13740

    Article  Google Scholar 

  23. Yang XC, Lu Y, Wang MT, Yao JQ (2016) SPR sensor based on exposed-core grapefruit fiber with bimetallic structure. IEEE Photonics Tech L 28:649–652

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China. (973 Program) (grant number: 2010CB327801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Lu, Y., Liu, B. et al. Polarization Characteristics of High-Birefringence Photonic Crystal Fiber Selectively Coated with Silver Layers. Plasmonics 13, 1035–1042 (2018). https://doi.org/10.1007/s11468-017-0602-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0602-5

Keywords

Navigation