Skip to main content
Log in

Synthesis of Efficient and Effective γ-MnO2/α-Bi2O3/a-Si Solar Cell by Vacuum Thermal Evaporation Technique

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Fabrication of efficient, effective, and low-cost solar cell is still a challenging task using metal oxide semiconductors; in this work, γ-MnO2/α-Bi2O3 heterojunction was deposited on amorphous silicon substrate (a-Si) as a solar cell using vacuum thermal evaporation technique. XRD analysis of γ-MnO2/α-Bi2O3 showed a polycrystalline structure; SEM micrographs revealed that γ-MnO2 has quasi-spherical nanoparticles with a grain size average of 86.86 nm, while α-Bi2O3 has cauliflower-like microstructure with a grain size average of 250.71 nm; the optical bandgap were found to be 3.792 and 1.888 eV for γ-MnO2 and α-Bi2O3 respectively; I-V characteristic curve measurement was performed to evaluate the photovoltaic efficiency of MgF2/γ-MnO2/α-Bi2O3/a-Si solar cell and found to be 3.28%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shyam, Ashutosh. Fabrication of high quality, low bandgap amorphous silicon & amorphous silicon germanium alloy solar cell by chemical annealing. (2011).

    Google Scholar 

  2. Gobrecht, H., et al. Über Untersuchungen an Wismutoxid-Aufdampfschichten. I. Herstellung sowie elektrische und optische Eigenschaften. physica status solidi (b) 33.2 (1969): 599–606.

  3. Zhang J et al (2015) Preparation of novel YBiO3/Bi2O3 heterostructured composite with high visible light photocatalytic activity. Mater Express 5(4):336–342

    Article  CAS  Google Scholar 

  4. Dolocan, V., and F. Iova. Optical properties of Bi2O3 thin films. physica status solidi (a) 64.2 (1981): 755–759.

  5. Dolocan V (1978) Transmission spectra of bismuth trioxide thin films. Appl Phys 16(4):405–407

    Article  CAS  Google Scholar 

  6. Leontie L et al (2001) Optical properties of bismuth trioxide thin films. Mater Res Bull 36(9):1629–1637

    Article  CAS  Google Scholar 

  7. Leontie L, Caraman LM, Rusu GI (2000) On the photoconductivity of Bi∼ 2O∼ 3 in thin films. J Optoelectron Adv Mater 2(4):385–390

    CAS  Google Scholar 

  8. Leontie L et al (2002) Structural and optical characteristics of bismuth oxide thin films. Surf Sci 507:480–485

    Article  Google Scholar 

  9. Tomchenko AA (2000) Structure and gas-sensitive properties of WO 3–Bi 2 O 3 mixed thick films. Sensors Actuators B Chem 68(1):48–52

    Article  CAS  Google Scholar 

  10. Shimanoe K et al (1998) Bismuth oxide thin film as new electrochromic material. Solid State Ionics 113:415–419

    Article  Google Scholar 

  11. Monnereau O et al (2003) Synthesis of Bi2O3 by controlled transformation rate thermal analysis: a new route for this oxide? Solid State Ionics 157(1):163–169

    Article  CAS  Google Scholar 

  12. Gualtieri AF, Immovilli S, Prudenziati M (1997) Reduction process of RuO2 powder and kinetics of compound omega-Bi2O3 [J]. Powder Diffract 12(2):90–92

    Article  CAS  Google Scholar 

  13. Shuk P et al (1996) Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics 89(3):179–196

    Article  CAS  Google Scholar 

  14. Farid ul Islam AKM, Islam R, Khan KA (2005) Studies on the thermoelectric effect in semiconducting MnO2 thin films. J Mater Sci Mater Electron 16(4):203–207

    Article  CAS  Google Scholar 

  15. Xu Y et al (2014) Electrodeposition of nanostructured MnO2 electrode on three-dimensional nickel/silicon microchannel plates for miniature supercapacitors. Mater Lett 126:116–118

    Article  CAS  Google Scholar 

  16. Toupin M, Brousse T, Bélanger D (2002) Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem Mater 14(9):3946–3952

    Article  CAS  Google Scholar 

  17. Wang X, Li Y (2002) Selected-control hydrothermal synthesis of α-and β-MnO2 single crystal nanowires. J Am Chem Soc 124(12):2880–2881

    Article  CAS  Google Scholar 

  18. Cheng F et al (2006) Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg Chem 45(5):2038–2044

    Article  CAS  Google Scholar 

  19. Suib SL (2008) Porous manganese oxide octahedral molecular sieves and octahedral layered materials. Acc Chem Res 41(4):479–487

    Article  CAS  Google Scholar 

  20. Suib SL (2008) Structure, porosity, and redox in porous manganese oxide octahedral layer and molecular sieve materials. J Mater Chem 18(14):1623–1631

    Article  CAS  Google Scholar 

  21. Espinal L et al (2012) Time-dependent CO2 sorption hysteresis in a one-dimensional microporous octahedral molecular sieve. J Am Chem Soc 134(18):7944–7951

    Article  CAS  Google Scholar 

  22. Cheng Q et al (2010) Electrodeposition of MnO2 on carbon nanotube thin films as flexible electrodes for supercapacitors. Transactions of the Materials Research Society of Japan 35(2):369–372

    Article  CAS  Google Scholar 

  23. Grundy AN, Hallstedt B, Gauckler LJ (2003) Assessment of the Mn-O system. Journal of phase equilibria 24(1):21–39

    CAS  Google Scholar 

  24. Hu C-C, Wang C-C (2003) Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition. J Electrochem Soc 150(8):A1079–A1084

    Article  CAS  Google Scholar 

  25. Hu C-C, Tsou T-W (2002) Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition. Electrochim Acta 47(21):3523–3532

    Article  CAS  Google Scholar 

  26. Wan Y et al (2016) Magnesium fluoride electron-selective contacts for crystalline silicon solar cells. ACS Appl Mater Interfaces 8(23):14671–14677

    Article  CAS  Google Scholar 

  27. Ammar T. Salih, Aus A. Najim, Malek A.H. Muhi, Kadhim R. Gbashi, Single material multilayer ZnS as anti-reflective coating for solar cell applications, Optics Communications, Vol 388, (2017) 84–89.

Download references

Acknowledgments

The authors gratefully acknowledge the Nanotechnology and Advanced Materials Research Centre, University of Technology, Baghdad, Iraq, for conducting all the tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aus A. Najim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najim, A.A., Muhi, M.A., Gbashi, K.R. et al. Synthesis of Efficient and Effective γ-MnO2/α-Bi2O3/a-Si Solar Cell by Vacuum Thermal Evaporation Technique. Plasmonics 13, 891–895 (2018). https://doi.org/10.1007/s11468-017-0585-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0585-2

Keywords

Navigation