Skip to main content
Log in

Transverse Magneto-Optical Kerr Effect in Strongly Coupled Plasmon Gratings

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Enhancement of magneto-optical response by coupling of propagating with localized plasmons in a structure based on silver and bismuth-substituted ferrite garnet has been numerically studied. It is shown that the absolute value of the magneto-optical response in the examined structure reaches a high value of 0.04, and the structure has a reflection coefficient sufficiently high for a number of practical applications. The strong coupling between localized and propagating plasmons, which caused the significant enhancement of the magneto-optical response, was manifested in the reflection spectrum of the structure in the form of an asymmetric Fano-like resonance. The proposed structure, intended for operation in the near infrared range, is a promising one for solving various problems in magnonics and bionanophotonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen H, Lu W, Li J, Yu J, Lin Z, Chan CT, Liu S (2016) Manipulating unidirectional edge states via magnetic plasmonic gradient metasurfaces. Plasmonics:1–12

  2. Maksymov SI (2016) Magneto-plasmonic nanoantennas: basics and applications. Reviews in Physics 1:36–51

    Article  Google Scholar 

  3. Demokritov SO, Slavin AN (2012) Magnonics: from fundamentals to applications. Springer Science & Business Media 125, Springer Heidelberg New York Dordrecht London

  4. Lenk B, Ulrichs H, Garbs F, Münzenberg M (2011) The building blocks of magnonics. Phys Rep 507(4):107–136

    Article  Google Scholar 

  5. Kimel AV, Kirilyuk A, Usachev PA, Pisarev RV, Balbashov AM, Rasing T (2005) Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435(7042):655–657

    Article  CAS  Google Scholar 

  6. Kirilyuk A, Kimel AV, Rasing T (2010) Ultrafast optical manipulation of magnetic order. Rev Mod Phys 82(3):2731

    Article  Google Scholar 

  7. Hansteen F, Kimel AV, Kirilyuk A, Rasing T (2006) Nonthermal ultrafast optical control of the magnetization in garnet films. Phys Rev B 73(1):014421

    Article  Google Scholar 

  8. Wang G, Yan X (2016) Magneto-optic effects in subwavelength nonlinear plasmonic waveguides. Plasmonics:1–5

  9. Regatos D, Sepúlveda B, Fariña D, Carrascosa LG, Lechuga LM (2011) Suitable combination of noble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing. Opt Express 19(9):8336–8346

    Article  CAS  Google Scholar 

  10. Chou KH, Lin EP, Chen TC, Lai CH, Wang LW, Chang KW, Lee MC (2014) Application of strong transverse magneto-optical Kerr effect on high sensitive surface plasmon grating sensors. Opt Express 22(16):19794–19802

    Article  Google Scholar 

  11. Pellegrini G, Mattei G (2014) High-performance magneto-optic surface plasmon resonance sensor design: an optimization approach. Plasmonics 9(6):1457–1462

    Article  CAS  Google Scholar 

  12. Armelles G, Cebollada A, García-Martín A, González MU (2013) Magnetoplasmonics: combining magnetic and plasmonic functionalities. Advanced Optical Materials 1(1):10–35

    Article  Google Scholar 

  13. Vorob'ev A, Chesnitskiy A, Toropov A, Prinz V (2013) Three-axis Hall transducer based on semiconductor microtubes. Appl Phys Lett 103(17):173513

    Article  Google Scholar 

  14. Zvezdin AK, Kotov VA (1997) Modern magnetooptics and magnetooptical materials. Bristol and Philadelphia: IOP Publishing :363

  15. Maksymov IS, Hutomo J, Kostylev M (2014) Transverse magneto-optical Kerr effect in subwavelength dielectric gratings. Opt Express 22(7):8720–8725

    Article  CAS  Google Scholar 

  16. Mayergoyz, ID., Lang G, Hung L, Tkachuk S, Krafft C, Rabin O (2010) Plasmon resonance enhancement of magneto-optic effects in garnets. Journal of Applied Physics 107(9):09A925

  17. Belotelov VI, Akimov IA, Pohl M, Kotov VA, Kasture S, Vengurlekar AS, Gopal AV, Yakovlev DR, Zvezdin AK, Bayer M (2011) Enhanced magneto-optical effects in magnetoplasmonic crystals. Nat Nanotechnol 6(6):370–376

    Article  CAS  Google Scholar 

  18. Chin JY, Steinle T, Wehlus T, Dregely D, Weiss T, Belotelov VI, Stritzker B, Giessen H (2013) Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation. Nat Commun 4:1599

    Article  Google Scholar 

  19. Maurer T, Adam PM, Lévêque G (2015) Coupling between plasmonic films and nanostructures: from basics to applications. Nano 4(1):363–382

    CAS  Google Scholar 

  20. Yun H, Lee S, Kim K, Lee I, Lee B (2014) Hybrid states of propagating and localized surface plasmons at silver core/silica shell nanocubes on a thin silver layer. Opt Express 22(7):8383–8395

    Article  CAS  Google Scholar 

  21. Huang CZ, Wu MJ, Chen SY (2015) High order gap modes of film-coupled nanospheres. J Phys Chem 119(24):13799–13806

    CAS  Google Scholar 

  22. Yu P (2016) Controllable optical activity with non-chiral plasmonic metasurfaces. Light: Science & Applications 5(7):e16096

    Article  CAS  Google Scholar 

  23. Gayduk AE, Prinz VY, Seleznev VA, Rechkunov SN (2016) Large-area multilayer infrared nano-wire grid polarizers. Infrared Phys Technol 75:77–81

    Article  CAS  Google Scholar 

  24. Oubre C, Nordlander P (2004) Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method. J Phys Chem B 108(46):17740–17747

    Article  CAS  Google Scholar 

  25. Fang YT (2014) Tunable nonreciprocal tunneling based on nonsymmetric magnetoplasmonic resonance structure. Plasmonics 9(5):1133–1141

    Article  CAS  Google Scholar 

  26. Chu Y, Crozier KB (2009) Experimental study of the interaction between localized and propagating surface plasmons. Opt Lett 34(3):244–246

    Article  CAS  Google Scholar 

  27. Lin L, Zheng Y (2015) Optimizing plasmonic nanoantennas via coordinated multiple coupling. Scientific reports 5:14788

    Article  CAS  Google Scholar 

  28. Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82(3):2257

    Article  CAS  Google Scholar 

  29. Ren W, Dai Y, Cai H, Ding H, Pan N, Wang X (2013) Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor. Opt Express 21(8):10251–10258

    Article  CAS  Google Scholar 

  30. Torrado J, González-Díaz J, González M, García-Martín A, Armelles G (2010) Magneto-optical effects in interacting localized and propagating surface plasmon modes. Opt Express 18(15):15635–15642

    Article  CAS  Google Scholar 

  31. Grunin A, Sapoletova NA, Napolskii KS, Eliseev AA, Fedyanin AA (2012) Magnetoplasmonic nanostructures based on nickel inverse opal slabs. Journal of Applied Physics 111(7):07A948

  32. Soifer VA (2014) Diffractive nanophotonics. CRC Press

  33. Lermé J (2014) Nanoparticle above a Dielectric Interface: Plasmon Hybridization Model, Comparison with the Dimer System, and against Exact Electrodynamics Calculations. J Phys Chem 118(48):28118–28133

    Google Scholar 

  34. Kahl S, Khartsev SI, Grishin AM, Kawano K, Kong G, Chakalov RA, Abell JS (2002) Structure, microstructure, and magneto-optical properties of laser deposited Bi3Fe5O12/Gd3Ga5O12 (111) films. J Appl Phys 91(12):9556–9560

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (Grant No. 15-02-99696) and by the Russian Academy of Sciences. The authors express their gratitude to Dr. R.M. Taziev for assistance in performing CST Microwave Studio 2015 calculations and to Dr. S.N. Rechkunov for his interest in the work and for fruitful discussions of obtained results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton V. Chesnitskiy.

Electronic supplementary material

ESM 1

(GIF 4811 kb)

ESM 2

(GIF 2856 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnitskiy, A.V., Gayduk, A.E. & Prinz, V.Y. Transverse Magneto-Optical Kerr Effect in Strongly Coupled Plasmon Gratings. Plasmonics 13, 885–889 (2018). https://doi.org/10.1007/s11468-017-0584-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0584-3

Keywords

Navigation