Skip to main content

Advertisement

Log in

Förster Energy Transfer in the Vicinity of Two Metallic Nanospheres (Dimer)

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present a detailed theoretical analysis of the Förster energy transfer process when a pair of molecules (donor and acceptor) is located nearby a cluster of two metallic nanospheres (dimer). We consider the case in which plasmonic resonances are within the overlap between the donor emission and acceptor absorption spectra, as well as the case that excludes such resonances from the aforementioned spectral overlap. Moreover, we explore the dependence of the Förster energy transfer rate on different dimer configurations (size and separation of nanospheres) and several dipole orientations of molecules. The dimer perturbs strongly the Förster energy transfer rate when plasmons are excited, donor dipole is oriented along the longitudinal axis of the dimer, and the radii of nanospheres and the sphere-gap distance are on the order of a few nanometers. In case of plasmonic excitation, the Förster energy transfer rate is degraded as the sphere-gap distance and size of the nanoparticles increase due to the dephasing of electronic motion arising from ohmic losses of metal. Also, we study the Förster efficiency influenced by the dimer, finding that the high efficiency region (delimited by the Förster radius curve) is reduced as a consequence of significant enhancement of the direct donor decay rate. Our study could impact applications that involve Förster energy transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Förster Th (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 33:166–175

    Article  Google Scholar 

  2. Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850

    Article  CAS  Google Scholar 

  3. Cooper GM, Hausman RE (2009) The cell: a molecular approach, 5th edn. ASM Press, Washington

    Google Scholar 

  4. Scholes GD (2003) Long-range resonance energy transfer in molecular systems. Annu Rev Phys Chem 54:57–87

    Article  CAS  Google Scholar 

  5. Kagan CR, Murray CB, Nirmal M, Bawendi MG (1996) Electronic energy transfer in CdSe quantum dot solids. Phys Rev Lett 76:1517–1520

    Article  CAS  Google Scholar 

  6. Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7:730–734

    Article  CAS  Google Scholar 

  7. Mor GK, Basham J, Paulose M, Kim S, Varghese OK, Vaish A, Yoriya S, Grimes CA (2010) High-efficiency Förster resonance energy transfer in solid-state dye sensitized solar cells. Nano Lett 10:2387–2394

    Article  CAS  Google Scholar 

  8. Purcell EM (1946) Spontaneous emission probabilities at radio frequencies. Phys Rev 69:681

    Article  Google Scholar 

  9. Dung HT, Knöll L, Welsch D-G (2002) Intermolecular energy transfer in the presence of dispersing and absorbing media. Phys Rev A 65:043813

    Article  Google Scholar 

  10. Pelton M (2015) Modified spontaneous emission in nanophotonic structures. Nat Photon 9:427–435

    Article  CAS  Google Scholar 

  11. Colas des Francs G, Barthes J, Bouhelier A, Weeber JC, Dereux A, Cuche A, Girard C (2016) Plasmonic Purcell factor and coupling efficiency to surface plasmons. Implications for addressing and controlling optical nanosources. J Opt 18:094005

    Article  Google Scholar 

  12. Gonzaga-Galeana JA, Zurita-Sánchez JR (2013) A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) efficiency enhancement or reduction? (2) the control of the Förster radius of the unbounded medium. (3) the impact of the local density of states. J Chem Phys 139:244302

    Article  Google Scholar 

  13. Nordlander P, Oubre C, Prodan E, Li K, Stockman M (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4:899–903

    Article  CAS  Google Scholar 

  14. Faessler V, Hrelescu C, Lutich AA, Osinkina L, Mayilo S, Jäckel F, Feldmann J (2011) Accelerating fluorescence resonance energy transfer with plasmonic nanoresonators. Chem Phys Lett 508:67–70

    Article  CAS  Google Scholar 

  15. Ghenuche P, Mivelle M, de Torres J, Moparthi SB, Rigneault H, Van Hulst NF, García-Parajó MF, Wenger J (2015) Matching nanoantenna field confinement to FRET distances enhances Förster energy transfer rates. Nano Lett 15:6193–6201

  16. Bidault S, Devilez A, Ghenuche P, Stout B, Bonod N, Wenger J (2016) Competition between Förster resonance energy transfer and donor photodynamics in plasmonic dimer nanoantennas. ACS Photonics 3:895–903

    Article  CAS  Google Scholar 

  17. de Torres J, Mivelle M, Moparthi SB, Rigneault H, Van Hulst NF, García-Parajó MF, Margeat E, Wenger J (2016) Plasmonic nanoantennas enable forbidden Förster dipole-dipole energy transfer and enhanced the FRET efficiency. Nano Lett 16:6222–6230

  18. Ren J, Wu T, Yang B, Zhang X (2016) Simultaneously giant enhancement of Förster resonance energy transfer rate and efficiency based on plasmonic excitations. Phys Rev B 94:125416

    Article  Google Scholar 

  19. Andrews DL (1989) A unified theory of radiative and radiationless molecular energy transfer. Chem Phys 135:195–201

    Article  CAS  Google Scholar 

  20. Durach M, Rusina A, Klimov VI, Stockman MI (2008) Nanoplasmonic renormalization and enhancement of Coulomb interactions. New J Phys 10:105011

    Article  Google Scholar 

  21. Wubs M, Vos WL (2016) Förster resonance energy transfer rate in any dielectric nanophotonic medium with weak dispersion. New J Phys 18:053037

    Article  Google Scholar 

  22. Zurita-Sánchez JR, Tec-Chim AI (2014) Quasi-static potential created by an oscillating dipole in the vicinity of two dielectric spheres (dimer): inversion transformation method. J Opt 16:065002

    Article  Google Scholar 

  23. Hövel H, Fritz S, Hilger A, Kreibig U, Vollmer M (1993) Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. Phys Rev B 48:18178– 18188

    Article  Google Scholar 

  24. Palik ED (1998) Handbook of optical constants of solids vol. 4. Academic Press, San Diego

    Google Scholar 

  25. Klimov VV, Guzatov DV (2007) Optical properties of an atom in the presence of a two-nanosphere cluster. Quantum Electron 37:209–230

    Article  CAS  Google Scholar 

  26. TermoFisher Scientific (2016) Fluorescence SpectraViewer. http://www.thermofisher.com/mx/es/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html, Accessed May 2016

  27. Fluorophores.org (2016) Data of Fluorescent Dyes, Properties and Applications. http://www.fluorophores.tugraz.at/substance/490, Accessed May 2016

Download references

Acknowledgements

This work has been supported by SEP-CONACYT (Basic Science Grant CB2008/98449-F). JM-V thanks CONACYT for his scholarship (#625523).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge R. Zurita-Sánchez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.34 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zurita-Sánchez, J.R., Méndez-Villanueva, J. Förster Energy Transfer in the Vicinity of Two Metallic Nanospheres (Dimer). Plasmonics 13, 873–883 (2018). https://doi.org/10.1007/s11468-017-0583-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0583-4

Keywords

Navigation