Skip to main content
Log in

Optical Absorption of Thin Film Solar Cells with Hybrid Arranged Bottom Grating

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Crystalline silicon thin film solar cells with hybrid arranged bottom grating are proposed. Optical absorption efficiency and photocurrent density are calculated to get optimized bottom grating parameters. Compared with mono arranged Ag grating or Al-doped zinc-oxide grating, hybrid arranged bottom grating could couple more near-infrared region lights into the active absorber layer. Optical absorption enhancement profiles are plotted for monolayer grating solar cells with four different bottom grating arrangements, which agree with dispersion characteristics well. The absorption enhancement profiles illustrate the mechanism of the more coupling of near-infrared lights. Electrical modeling is considered in the end and it is found that hybrid arranged bottom grating’s thin film solar cell outperforms the thin film solar cells with mono arranged bottom gratings evidently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Reference

  1. Pala RA, White J, Barnard E, Liu J, Brongersma ML (2009) Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv Mater 21:3504–3509

    Article  CAS  Google Scholar 

  2. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  3. Min C, Li J, Veronis G, Lee J-Y, Fan S, Peumans P (2010) Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings. Appl Phys Lett 96:133302

    Article  Google Scholar 

  4. Munday JN, Atwater HA (2011) Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. Nano Lett 11:2195–2201

    Article  CAS  Google Scholar 

  5. Wang W, Wu S, Reinhardt K, Lu Y, Chen S (2010) Broadband light absorption enhancement in thin-film silicon solar cells. Nano Lett 10:2012–2018

    Article  CAS  Google Scholar 

  6. Yang M, Fu Z, Lin F, Zhu X (2011) Incident angle dependence of absorption enhancement in plasmonic solar cells. Opt Express S4:A763–A771

    Article  Google Scholar 

  7. Yang M, Li J, Lin F, Zhu X (2013) Absorption enhancements in plasmonic solar cells coated with metallic nanoparticles. Plasmonics 8:877–883

    Article  CAS  Google Scholar 

  8. Wen L, Sun F, Chen Q (2014) Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells. Appl Phys Lett 104:151106

    Article  Google Scholar 

  9. Zhang X, Knize RJ, Lu Y (2013) Enhanced light absorption in thin-film tandem solar cells using a bottom metallic nanograting. Appl Phys A-Mater 115:509–515

    Article  Google Scholar 

  10. Shi WB, Fan RH, Zhang K, Xu DH, Xiong X, Peng RW, Wang M (2015) Broadband light trapping and absorption of thin-film silicon sandwiched by trapezoidal surface and silver grating. J Appl Phys 117:065104

    Article  Google Scholar 

  11. Li X, Hylton NP, Giannini V, Lee K-H, Ekins-Daukes NJ, Maier SA (2011) Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells. Opt Express S4:A888–A896

    Article  Google Scholar 

  12. Deceglie MG, Ferry VE, Alivisatos AP, Atwater HA (2012) Design of nanostructured solar cells using coupled optical and electrical modeling. Nano Lett 12:2894–2900

    Article  CAS  Google Scholar 

  13. Zeng L, Yi Y, Hong C, Liu J, Feng N, Duan X, Kimerling LC, Alamariu BA (2006) Efficiency enhancement in Si solar cells by textured photonic crystal back reflector. Appl Phys Lett 89:111111

    Article  Google Scholar 

  14. Bermel P, Luo C, Zeng L, Kimerling LC, Joannopoulos JD (2007) Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. Opt Express 25:16986–17000

    Article  Google Scholar 

  15. Panoiu NC, Osgood RM Jr (2007) Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes. Opt Lett 19:2825–2827

    Article  Google Scholar 

  16. Zhou D, Biswas R (2007) Photonic crystal enhanced light-trapping in thin film solar cells. J Appl Phys 103:093102

    Article  Google Scholar 

  17. Pala RA, Liu JSQ, Barnard ES, Askarov D, Garnett EC, Fan S, Brongersma ML (2013) Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells. Nat Commun 4(7):375–381

    Google Scholar 

  18. Awal MA, Ahmed Z, Talukder MA (2015) An efficient plasmonic photovoltaic structure using silicon strip-loaded geometry. J Appl Phys 117:063109

    Article  Google Scholar 

  19. Paetzold UW (2012) Light trapping with plasmonic back contacts in thin-film silicon solar cells. RWTH Aachen University, Aachen, pp 28–30

    Google Scholar 

  20. Raki AD, Djurii AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271–5283

    Article  Google Scholar 

  21. Aspnes DE, Theeten JB (1980) Spectroscopic analysis of the interface between Si and its thermally grown oxide. J Electrochem Soc 127:1359–1365

    Article  CAS  Google Scholar 

  22. Gao L, Lemarchand F, Lequime M (2013) Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs. J Eur Opt Soc-Rapid Publ 8(1):92–103

    Google Scholar 

  23. Yu Z, Raman A, Fan S (2010) Fundamental limit of light trapping in grating structures. Opt Express 18:A366–A380

    Article  CAS  Google Scholar 

  24. Yu Z, Raman A, Fan S (2010) Fundamental limit of nanophotonic light trapping in solar cells. PNAS 41:17491–17496

    Article  Google Scholar 

  25. Chong TK, Wilson J, Mokkapati S, Catchpole KR (2013) Optimal wavelength scale diffraction gratings for light trapping in solar cells. J Opt 14:024012

    Article  Google Scholar 

  26. Yablonovitch E (1982) Statistical ray optics. J Opt Soc Am 7:899–907

    Article  Google Scholar 

  27. Yablonovitch E, Cody GD (1982) Intensity enhancement in textured optical sheets for solar cells. IEEE T Electron Dev 2:300–305

    Article  Google Scholar 

  28. Wang KX, Yu Z, Liu V, Yi C, Fan S (2012) Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett 12:1616–1619

    Article  CAS  Google Scholar 

  29. Green MA (1982) Solar cells: operating principles, technology and system applications. Prentice-Hall, New Jersey, pp 50–74

    Google Scholar 

  30. Nelson J (2003) The physics of solar cells. Imperial College Press, London, p 121

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the projects National Natural Science Foundation of China under Grant Nos. 51435003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Wang, Y., Zheng, H. et al. Optical Absorption of Thin Film Solar Cells with Hybrid Arranged Bottom Grating. Plasmonics 13, 815–823 (2018). https://doi.org/10.1007/s11468-017-0577-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0577-2

Keywords

Navigation