Skip to main content
Log in

A Facile Strategy for All-Optical Controlling Platform by Using Plasmonic Perfect Absorbers

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Dual-band light absorption with the maximal absorptivity up to 99.7% and the minimal spectral bandwidth down to 3 nm is obtained in the plasmonic absorbers consisting of triple-layer plasmonic crystal-nonlinear medium cavity-metal substrate structure, where the intercalated dielectric material is chosen to be a Kerr medium cavity. Efficient all-optical controlling with high spectral intensity change ratios and detecting signal-to-noise is achieved for the system after a slight increase of pumping intensity. These impressive results mainly result from the strong plasmonic resonant field confinement in the middle nonlinear Kerr medium cavity and the near-perfect relative intensity change response by the ultra-sharp anti-reflection spectrum. This work can lay a foundation for advanced all-optical devices by exploiting light perfect absorption behavior and resonant optical field enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu W, Li M, Guzzon R, Norberg E, Parker J, Lu M, Coldren L, Yao J (2016) A fully reconfigurable photonic integrated signal processor. Nat Photonics 10:190–195

    Article  CAS  Google Scholar 

  2. Hu X, Jiang P, Ding C, Yang H, Gong Q (2008) Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nat Photonics 2:185–189

    Article  CAS  Google Scholar 

  3. Chen S, Liu J, Lu H, Zhu Y (2013) All-optical strong coupling switches based on a coupled meta-atom and MIM nanocavity configuration. Plasmonics 8:1439–1444

    Article  CAS  Google Scholar 

  4. Wang H, Goorskey D, Xiao M (2002) Controlling light by light with three-level atoms inside an optical cavity. Opt Lett 27:1354–1356

    Article  CAS  Google Scholar 

  5. Li C, Xin J, Tang D, Hao F (2015) Control of group velocity based on nonlinear Kerr effect in a plasmonic superlattice. Plasmonics 10:1593–1596

    Article  CAS  Google Scholar 

  6. Li J, Tao J, Chen Z, Huang X (2016) All-optical controlling based on nonlinear graphene plasmonic waveguides. Opt Express 24:22169–22176

    Article  CAS  Google Scholar 

  7. Liu G, Deng H, Li G, Chen L, Dai Q, Lan S, Tie S (2014) Nonlinear optical properties of large-sized gold nanorods. Plasmonics 9:1471–1480

    Article  CAS  Google Scholar 

  8. Zheng Y, Yu Q, Tao K, Ouyang Z (2013) All-optical tunable filters based on optomechanical effects in two-dimensional photonic crystal cavities. Opt Lett 38:4362–4365

    Article  Google Scholar 

  9. Lin X, Yan J, Wu L, Lan S (2008) High transmission contrast for single resonator based all-optical diodes with pump-assisting. Opt Express 16:20949–20954

    Article  CAS  Google Scholar 

  10. Min C, Wang P, Chen C, Deng Y, Lu Y, Ming H, Ning T, Zhou Y, Yang G (2008) All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials. Opt Lett 33:869–871

    Article  Google Scholar 

  11. Abb M, Albella P, Aizpurua J, Muskens Otto L (2011) All-optical control of a single plasmonic nanoantenna–ITO hybrid. Nano Lett 11:2457–2463

    Article  CAS  Google Scholar 

  12. Fang M, Shi F, Chen Y (2016) Unidirectional all-optical absorption switch based on optical Tamm state in nonlinear plasmonic waveguide. Plasmonics 11:197–203

    Article  CAS  Google Scholar 

  13. Zhong Z, Xu Y, Lan S, Dai Q, Wu L (2010) Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media. Opt Express 18:79–86

    Article  CAS  Google Scholar 

  14. Tao J, Wang QJ, Huang XG (2011) All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6:753–759

    Article  Google Scholar 

  15. Watts CM, Liu XL, Padilla WJ (2012) Metamaterial electromagnetic wave absorbers. Adv Mater 24:OP98–OP120

    CAS  Google Scholar 

  16. Cui Y, He Y, Jin Y, Ding F, Yang L, Ye Y, Zhong S, Lin Y, He S (2014) Plasmonic and metamaterial structures as electromagnetic absorbers. Laser & Photon Rev 8:495–520

    Article  CAS  Google Scholar 

  17. Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorber. Nat Commun 2:517

    Article  Google Scholar 

  18. Liu Z, Liu X, Huang S, Pan P, Chen J, Liu G, Gu G (2015) Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. ACS Appl Mater Interfaces 7:4962–4968

    Article  CAS  Google Scholar 

  19. Zhong YK, Fu SM, Tu MH, Chen BR, Lin A (2016) A multimetal broadband metamaterial perfect absorber with compact dimension. IEEE Photonics Journal 8:6801810

    Google Scholar 

  20. Bruck R, Muskens Otto L (2013) Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches. Opt Express 21:27652–27661

    Article  Google Scholar 

  21. Li W, Valentine J (2014) Metamaterial perfect absorber based hot electron photodetection. Nano Lett 14:3510–3514

    Article  CAS  Google Scholar 

  22. Chen X, Chen Y, Yan M, Qiu M (2012) Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6:2550–2557

    Article  CAS  Google Scholar 

  23. He J, Ding P, Wang J, Fan C, Liang E (2015) Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption. Opt Express 23:6083–6091

    Article  CAS  Google Scholar 

  24. Fang Z, Zhen Y, Fan L, Zhu X, Nordlander P (2012) Tunable wide-angle plasmonic perfect absorber at visible frequencies. Phys Rev B 85:245401

    Article  Google Scholar 

  25. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348

    Article  CAS  Google Scholar 

  26. Luo S, Zhao J, Zuo D, Wang X (2016) Perfect narrow band absorber for sensing applications. Opt Express 24:9288–9294

    Article  CAS  Google Scholar 

  27. Jamali AA, Witzigmann B (2014) Plasmonic perfect absorbers for biosensing applications. Plasmonics 9:1265–1270

    Article  CAS  Google Scholar 

  28. Mandal P (2016) Plasmonic perfect absorber for refractive index sensing and SERS. Plasmonics 11:223–229

    Article  CAS  Google Scholar 

  29. Liu Z, Yu M, Huang S, Liu X, Wang Y, Liu M, Pan P, Liu G (2015) Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers. J Mater Chem C 3:4222–4226

    Article  CAS  Google Scholar 

  30. Liu G, Yu M, Liu Z, Liu X, Huang S, Pan P, Wang Y, Liu M, Gu G (2015) One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering. Nanotechnology 26:185702

  31. Moreau A, CiracìC MJJ, Hill RT, Wang Q, Wiley BJ, Chilkoti A, Smith DR (2012) Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492:86–89

    Article  CAS  Google Scholar 

  32. Palik ED (1985) Handbook of optical constants of solids. Academic, Boston

    Google Scholar 

  33. Boyd RW (1992) Nonlinear optics. Academic, New York

    Google Scholar 

  34. Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method, 2nd edn. Artech House, Boston

    Google Scholar 

  35. Liu G, Hu Y, Liu Z, Chen Y, Cai Z, Zhang X, Huang K (2013) Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method. Phys Chem Chem Phys 16:4320–4328

    Article  Google Scholar 

  36. Sönnichsen C (2001) Plasmons in metal nanostructures PhD Thesis Ludwig Maximilian University of Munich, Munich, Germany

  37. Li Z, Butun S, Aydin K (2014) Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. ACS Nano 8:8242–8248

    Article  CAS  Google Scholar 

  38. Liu JQ, He MD, Wang DY, Tang XM, Zhang XJ, Zhu YY (2014) Sharp plasmonic resonances based on coupling of high order localized resonance and lattice surface mode in meta-molecules. J Phys D Appl Phys 47:045303

    Article  Google Scholar 

  39. Chen J, Mao P, Xu R, Tang C, Liu Y, Wang Q, Zhang L (2015) Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials. Opt Express 23:16238–16245

    Article  CAS  Google Scholar 

  40. Chanda D, Shigeta K, Truong T, Lui E, Mihi A, Schulmerich M, Braun PV, Bhargava R, Rogers JA (2011) Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. Nat Commun 2:479

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China (Grants 11464019, 11564017, 11664015, and 11304159) and Young Scientist Development Program of Jiangxi Province (Grant 20142BCB23008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengqi Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Fu, G., Yang, YX. et al. A Facile Strategy for All-Optical Controlling Platform by Using Plasmonic Perfect Absorbers. Plasmonics 13, 797–801 (2018). https://doi.org/10.1007/s11468-017-0574-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0574-5

Keywords

Navigation