Skip to main content
Log in

Gamma–Radiation-Assisted Synthesis of Luminescent ZnO/Ag Heterostructure Core–Shell Nanocomposites

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

There is increasing interest in tuning the physical properties of semiconductor nanostructures using metal nanoparticles. In this work, ZnO nanosphere covered with Ag nanoparticles were synthesized using gamma–radiation-assisted method. The amount of deposited Ag nanoparticles is controlled by changing irradiation dose in the range of 30–100 kGy in order to tune the semiconductor–metal interaction. The successful deposition of Ag on the ZnO nanoparticles is examined by analyzing the morphology, microstructure, optical, and magnetic properties of ZnO/Ag nanoparticles through field emission scanning electron (FESEM), microscopy X-ray diffraction spectra, UV-visible absorption, photoluminescence measurement, and vibrating sample magnetometer. FESEM and elemental mapping results confirmed that Ag nanoparticles have been concentrated at the surface of spherical ZnO particles. Moreover, formation of pure metallic Ag nanoparticles has been confirmed by XRD analysis. UV-visible absorption spectra of obtained ZnO/Ag showed two combined peaks, a weak peak at the shoulder around 360 nm corresponds to ZnO and a sharp absorption at 420 nm refers to spherical Ag nanoparticles. Obtained results from photoluminescence revealed that the near-band-edge emission and defect-related visible emission bands of ZnO could be enhanced dramatically at the same time by deposition of Ag nanoparticles, which was ascribed to localized surface plasmon–exciton coupling and surface plasmon scattering. Controlling the semiconductor and metal coupling effect is interesting because of its application in highly efficient optoelectronic devices and biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahmad M, Zhao J, Iqbal J, Miao W, Xie L, Mo R, Zhu J (2009) Conductivity enhancement by slight indium doping in ZnO nanowires for optoelectronic applications. J Phys D Appl Phys 42(16):165406

    Article  Google Scholar 

  2. Hosseini S, Sarsari IA, Kameli P, Salamati H (2015) Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles. J. Alloy. Compd. 640:408–415

    Article  CAS  Google Scholar 

  3. Misra M, Kapur P, Nayak MK, Singla M (2014) Synthesis and visible photocatalytic activities of a Au@ Ag@ ZnO triple layer core–shell nanostructure. New J Chem 38(9):4197–4203

    Article  CAS  Google Scholar 

  4. Yan Y, Al-Jassim M, Wei S-H (2006) Doping of ZnO by group-IB elements. Appl Phys Lett 89(18):1912

    Article  Google Scholar 

  5. Öztas M, Bedir M (2008) Thickness dependence of structural, electrical and optical properties of sprayed ZnO: Cu films. Thin Solid Films 516(8):1703–1709

    Article  Google Scholar 

  6. Guidelli E, Baffa O, Clarke D (2015) Enhanced UV emission from silver/ZnO and gold/ZnO core-shell nanoparticles: photoluminescence, radioluminescence, and optically stimulated luminescence. Sci. Rep

  7. Costi R, Saunders AE, Banin U (2010) Colloidal hybrid nanostructures: a new type of functional materials. Angew Chem Int Ed Engl 49(29):4878–4897

    Article  CAS  Google Scholar 

  8. Xiao X, Ren F, Zhou X, Peng T, Wu W, Peng X, Yu X, Jiang C (2010) Surface plasmon-enhanced light emission using silver nanoparticles embedded in ZnO. Appl Phys Lett 97(7):071909

    Article  Google Scholar 

  9. Ponnuvelu DV, Suriyaraj SP, Vijayaraghavan T, Selvakumar R, Pullithadathail B (2015) Enhanced cell-wall damage mediated, antibacterial activity of core–shell ZnO@ Ag heterojunction nanorods against Staphylococcus aureus and Pseudomonas aeruginosa. J Mater Sci Mater Med 26(7):1–12

    Article  CAS  Google Scholar 

  10. Uddin AI, Phan D-T, Chung G-S (2015) Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid. Actuators B Chem 207:362–369

    Article  Google Scholar 

  11. Xu TN, Hu L, Jin SQ, Zhang BP, Cai XK, Wu HZ, Sui CH (2012) Photon energy conversion via localized surface plasmons in ZnO/Ag/ZnO nanostructures. Appl Surf Sci 258(15):5886–5891

    Article  CAS  Google Scholar 

  12. Rad MS, Kompany A, Zak AK, Javidi M, Mortazavi S (2013) Microleakage and antibacterial properties of ZnO and ZnO: Ag nanopowders prepared via a sol–gel method for endodontic sealer application. J Nanopart Res 15(9):1–8

    Google Scholar 

  13. Karunakaran C, Rajeswari V, Gomathisankar P (2010) Antibacterial and photocatalytic activities of sonochemically prepared ZnO and Ag–ZnO. J. Alloy. Compd. 508(2):587–591

    Article  CAS  Google Scholar 

  14. Chauhan R, Kumar A, Chaudhary R (2010) Synthesis and characterization of silver doped ZnO nanoparticles. Arch Appl Sci Res 2(5):378–385

    CAS  Google Scholar 

  15. Lu W, Liu G, Gao S, Xing S, Wang J (2008) Tyrosine-assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities. Nanotechnology 19(44):445711

    Article  Google Scholar 

  16. Bažant P, Kožáková Z, Kuřitka I, Machovský M (2010) Microwave assisted hydrothermal synthesis of Ag-ZnO nano-micro structures: comparison of closed and open vessel reactor influence on nitrate solution preparation route. In: NANOCON 2010-2nd International Conference, Conference Proceedings, TANGER Ltd.

  17. Abedini A, Saion E, Larki F, Zakaria A, Noroozi M, Soltani N (2012) Room temperature radiolytic synthesized Cu@CuAlO2-Al2O3 nanoparticles. Int J Mol Sci 13(9):11941–11953

    Article  CAS  Google Scholar 

  18. Abedini A, Daud AR, Hamid MAA, Othman NK (2014) Radiolytic formation of Fe3O4 nanoparticles: influence of radiation dose on structure and magnetic properties. PLoS One 9(3):e90055

    Article  Google Scholar 

  19. Abedini A, Larki F, Saion E, Zakaria A, Hussein M (2012) Radiation formation of Al–Ni bimetallic nanoparticles in aqueous system. J Radioanal Nucl Chem 292(1):361–366

    Article  CAS  Google Scholar 

  20. Abedini A, Saion E, Larki F (2012) Radiation-induced reduction of mixed copper and aluminum ionic aqueous solution. J Radioanal Nucl Chem 292(3):983–987

    Article  CAS  Google Scholar 

  21. Dinesh V, Biji P, Ashok A, Dhara S, Kamruddin M, Tyagi A, Raj B (2014) Plasmon-mediated, highly enhanced photocatalytic degradation of industrial textile dyes using hybrid ZnO@ Ag core–shell nanorods. RSC Adv 4(103):58930–58940

    Article  CAS  Google Scholar 

  22. Ekambaram S, Iikubo Y, Kudo A (2007) Combustion synthesis and photocatalytic properties of transition metal-incorporated ZnO. J. Alloy. Compd. 433(1):237–240

    Article  CAS  Google Scholar 

  23. Chen Y, Tse WH, Chen L, Zhang J (2015) Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties. Nanoscale Res Lett 10(1):1–8

    Article  Google Scholar 

  24. Abedini A, Menon PS, Daud AR, Hamid MAA, Shaari S Radiolytic formation of highly luminescent triangular Ag nanocolloids. J. Radioanal. Nucl. Chem.:1–7

  25. Bian J-C, Yang F, Li Z, Zeng J-L, Zhang X-W, Chen Z-D, Tan JZY, Peng R-Q, He H-Y, Wang J (2012) Mechanisms in photoluminescence enhancement of ZnO nanorod arrays by the localized surface plasmons of Ag nanoparticles. Appl Surf Sci 258(22):8548–8551

    Article  CAS  Google Scholar 

  26. Zhou X, Xiao X, Xu J, Cai G, Ren F, Jiang C (2011) Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling. EPL (Europhysics Letters) 93(5):57009

    Article  Google Scholar 

  27. Norek M, Łuka G, Godlewski M, Płociński T, Michalska-Domańska M, Stępniowski WJ (2013) Plasmonic enhancement of blue emission from ZnO nanorods grown on the anodic aluminum oxide (AAO) template. Appl Phys A Mater Sci Process 111(1):265–271

    Article  CAS  Google Scholar 

  28. Khurgin JB, Sun G, Soref R (2008) Electroluminescence efficiency enhancement using metal nanoparticles. Appl Phys Lett 93(2):021120

    Article  Google Scholar 

  29. Okamoto K, Niki I, Scherer A, Narukawa Y, Mukai T, Kawakami Y (2005) Surface plasmon enhanced spontaneous emission rate of InGaN∕GaN quantum wells probed by time-resolved photoluminescence spectroscopy. Appl Phys Lett 87(7):071102

    Article  Google Scholar 

  30. Zuo X, Yoon S-D, Yang A, Duan W-H, Vittoria C, Harris VG (2009) Ferromagnetism in pure wurtzite zinc oxide. J Appl Phys 105(7):07C508

    Article  Google Scholar 

  31. Xu Q, Zhou S, Schmidt H (2009) Magnetic properties of ZnO nanopowders. J Alloy Compd 487(1):665–667

    Article  CAS  Google Scholar 

  32. He M, Tian Y, Springer D, Putra I, Xing G, Chia E, Cheong S, Wu T (2011) Polaronic transport and magnetism in Ag-doped ZnO. Appl Phys Lett 99(22):222511

    Article  Google Scholar 

  33. Yuan J, Choo ESG, Tang X, Sheng Y, Ding J, Xue J (2010) Synthesis of ZnO–Pt nanoflowers and their photocatalytic applications. Nanotechnology 21(18):185606

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alam Abedini.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedini, A., Saraji, M., Bakar, A.A.A. et al. Gamma–Radiation-Assisted Synthesis of Luminescent ZnO/Ag Heterostructure Core–Shell Nanocomposites. Plasmonics 13, 771–778 (2018). https://doi.org/10.1007/s11468-017-0571-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0571-8

Keywords

Navigation