Skip to main content
Log in

Strong Coupling in the Structure of Single Metallic Nanoparticle Partially Buried in Molecular J-Aggregates

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We investigate the strong coupling phenomenon in the structure of metallic nanoparticle partially buried in molecular J-aggregates. The wave vector and the polarization of incident light impact on the strong coupling phenomenon. With the wave vector and the polarization of incident light in the plane of the interface between the air and molecular J-aggregates, the detuning energies δ reach to the largest. Incident light being injected normally from the air to molecular J-aggregates or from molecular J-aggregates to the air does not influence on δ, but influences on the intensities of the scattering spectra. Our structure has a great help in fabricating the structure which is used to generate the strong coupling phenomenon and also has potential applications in quantum networks, single-atom lasers, quantum information processing, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lodewijks K, Ryken J, Van Roy W, Borghs G, Lagae L, Van Dorpe P (2013) Tuning the fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications. Plasmonics 8:1379

    Article  CAS  Google Scholar 

  2. Bharadwaj R, Mukherji S, Mukherji S (2016) Probing the localized surface plasmon field of a gold nanoparticle-based fibre optic biosensor. Plasmonics 11:753

    Article  CAS  Google Scholar 

  3. Song G, Zhang W (2016) Electromagnetic field Propagatpion in the one-dimensional silver nanoparticle dimer chains: hotspots and energy transport. Plasmonics. doi:10.1007/s11468-016-0247-9

  4. Song G, Dai J, Cui L, Wu C, Xiao J (2013) Multipath switch based on the optical bistability with surface plasmon. Plasmonics 8:1529

    Article  CAS  Google Scholar 

  5. Liu JQ, Wang DY, Wu S, He MD, Yu LS, Chao XB, Sun GH (2016) Tunable plasmonic dispersion and strong coupling in graphene ribbon and double layer sheets structure. Plasmonics. doi:10.1007/s11468-016-0265-7

  6. Eizner E, Avayu O, Ditcovski R, Ellenbogen T (2015) Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons. Nano Lett 15:6215–6221

    Article  CAS  Google Scholar 

  7. Hennessy K, Badolato A, Winger M, Gerace D, Atatüre M, Gulde S, Fält S, Hu EL, Imamoglu A (2007) Quantum nature of a strongly coupled single quantum dot cavity system. Nature (London) 445:896

    Article  CAS  Google Scholar 

  8. Trügler A, Hohenester U (2008) Strong coupling between a metallic nanoparticle and a single molecule. Phys. Rev. B 77:115403

    Article  Google Scholar 

  9. Zengin G, Wersäll M, Nilsson S, Antosiewicz TJ, Käll M, Shegai T (2015) Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys. Rev. Lett. 114:157401

    Article  Google Scholar 

  10. Lin QY, Li Z, Brown KA, ÓBrien MN, Ross MB, Zhou Y, Butun S, Chen PC, Schatz GC, Dravid VP, Aydin K, Mirkin CA (2015) Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays. Nano Lett. 15(7):4699–4703

    Article  CAS  Google Scholar 

  11. Schlather AE, Large N, Urban AS, Nordlander P, Halas NJ (2013) Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. Nano Lett. 13(7):3281–3286

    Article  CAS  Google Scholar 

  12. Zengin G, Johansson G, Johansson P, Antosiewicz TJ, Käll M, Shegai T (2013) Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. Sci Rep. 3:3074

    Article  Google Scholar 

  13. Pockrand I, Brillante A, Möbius D (1982) Exciton surface plasmon coupling: an experimental investigation. The Journal of Chemical Physics 77:6289

    Article  CAS  Google Scholar 

  14. Bellessa J, Bonnand C, Plenet JC, Mugnier J (2004) Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys. Rev. Lett. 93:036404

    Article  CAS  Google Scholar 

  15. Ouyang Q, Zeng S, Jiang L, Hong L, Xu G, Dinh XQ, Qian J, He S, Qu J, Coquet P, Yong KT (2016) Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci. Reports 6:28190

    Article  CAS  Google Scholar 

  16. Vasa P, Pomraenke R, Cirmi G, De Re E, Wang W, Schwieger S, Leipold D, Runge E, Cerullo G, Lienau C (2010) Ultrafast manipulation of strong coupling in metal? molecular aggregate hybrid nanostructures. ACS Nano 4(12):7559–7565

    Article  CAS  Google Scholar 

  17. Symonds C, Bonnand C, Plenet JC, Bréhier A, Parashkov R, Lauret JS, Deleporte E, Bellessa J (2008) Particularities of surface plasmons exciton strong coupling with large Rabi splitting. New J Phys 10:065017

    Article  Google Scholar 

  18. Dintinger J, Klein S, Bustos F, Barnes WL, Ebbesen TW (2005) Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys. Rev. B 71:035424

    Article  Google Scholar 

  19. Chikkaraddy R, de Nijs B, Benz F, Barrow SJ, Scherman OA, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg JJ (2016) Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Nature 535:127

    Article  CAS  Google Scholar 

  20. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107:668–677

    Article  CAS  Google Scholar 

  21. Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzan LM, de Abajo Garcia F (2008) Modelling the optical response of gold nanoparticles. J. Chem. Soc. Rev. 37:1792–1805

    Article  CAS  Google Scholar 

  22. Scholl JA, Koh AL, Dionne JA (2012) Quantum plasmon resonances of individual metallic nanoparticles. Nature 483:421– 427

    Article  CAS  Google Scholar 

  23. Zhao Y, Xu L, Ma W, Wang L, Kuang H, Xu C, Kotov NA (2014) Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection. Nano Lett. 14:3908–3913

    Article  CAS  Google Scholar 

  24. Palik E (1985) Handbook of optical constant of solids. Academic, San Diego

    Google Scholar 

Download references

Acknowledgments

This work was supported by Ministry of Science and Technology of China (Grant No. 2016YFA0301300), the National Natural Science Foundations of China (Grant No. 11604020), Research Fund for the Doctoral Program of Higher Education of China(RFDP) (Grant No. 20130005120012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, G., Yu, L., Duan, G. et al. Strong Coupling in the Structure of Single Metallic Nanoparticle Partially Buried in Molecular J-Aggregates. Plasmonics 13, 743–747 (2018). https://doi.org/10.1007/s11468-017-0567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0567-4

Keywords

Navigation