Skip to main content
Log in

Magnetically Controlled Nanofocusing of a Graphene Plasmonic Lens

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we propose a method to tailor the nanofocusing of plasmons on graphene plasmonic lens, which is composed of graphene and circular dielectric gratings of magneto-optical material beneath it. With an external magnetic field parallel to graphene surface, the magneto-optical effect of substrate leads to the difference in modal indices of graphene plasmons, which also introduces an additional relative phase difference between these two plasmons during excitation and propagation. Together, these two effects enable us to tailor the position of focal points through external magnetic field, which has been described by an analytical approach based on phase matching and verified by numerical simulations. With an operation wavelength of 8500 nm and an external magnetic field from B = −1 T to B = 1 T, a shift distance over one and a half times of plasmons wavelength for focal points or donut-shaped field profiles can be obtained under linearly or circularly polarized light. The proposed scheme has potentials in diverse applications, such as the tunable nanofocusing and particle manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Book  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200. doi:10.1038/nature04233

    Article  CAS  Google Scholar 

  3. Francescato Y, Giannini V, Maier SA (2013) Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon. New J Phys 15(6):063020. doi:10.1088/1367-2630/15/6/063020

    Article  Google Scholar 

  4. Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6(10):630–634. doi:10.1038/nnano.2011.146

    Article  CAS  Google Scholar 

  5. Liu F, Qian C, Chong YD (2015) Directional excitation of graphene surface plasmons. Opt Express 23(3):2383–2391. doi:10.1364/oe.23.002383

    Article  CAS  Google Scholar 

  6. Zhu B, Ren G, Gao Y, Wu B, Wan C, Jian S (2016) Magnetically-controlled logic gates of graphene plasmons based on non-reciprocal coupling. IEEE J Sel Top Quantum Electron 22(2):237–243. doi:10.1109/jstqe.2015.2493958

    Article  Google Scholar 

  7. Liu Z, Steele JM, Srituravanich W, Pikus Y, Sun C, Zhang X (2005) Focusing surface plasmons with a plasmonic lens. Nano Lett 5(9):1726–1729. doi:10.1021/nl051013j

    Article  CAS  Google Scholar 

  8. Lerman GM, Yanai A, Levy U (2009) Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light. Nano Lett 9(5):2139–2143. doi:10.1021/nl900694r

    Article  CAS  Google Scholar 

  9. Li J, Yang C, Zhao H, Lin F, Zhu X (2014) Plasmonic focusing in spiral nanostructures under linearly polarized illumination. Opt Express 22(14):16686. doi:10.1364/oe.22.016686

    Article  Google Scholar 

  10. Tsai WY, Huang JS, Huang CB (2014) Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral. Nano Lett 14(2):547–552. doi:10.1021/nl403608a

    Article  CAS  Google Scholar 

  11. Zhu B, Ren G, Cryan MJ, Wan C, Gao Y, Yang Y, Jian S (2015) Tunable graphene-coated spiral dielectric lens as a circular polarization analyzer. Opt Express 23(7):8348–8356. doi:10.1364/OE.23.008348

    Article  CAS  Google Scholar 

  12. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):064302. doi:10.1063/1.2891452

    Article  Google Scholar 

  13. Gao W, Shu J, Qiu C, Xu Q (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6(9):7806–7813. doi:10.1021/nn301888e

    Article  CAS  Google Scholar 

  14. Biel B, Triozon F, Blase X, Roche S (2009) Chemically induced mobility gaps in graphene nanoribbons: a route for upscaling device performances. Nano Lett 9(7):2725–2729. doi:10.1021/nl901226s

    Article  CAS  Google Scholar 

  15. Brion J, Wallis R, Hartstein A, Burstein E (1972) Theory of surface magnetoplasmons in semiconductors. Phys Rev Lett 28(22):1455–1458. doi:10.1103/PhysRevLett.28.1455

    Article  Google Scholar 

  16. Xu B, Hu H, Liu J, Wei X, Wang Q, Song G, Xu Y (2013) Terahertz light deflection in doped semiconductor slit arrays. Opt Commun 308:74–77. doi:10.1016/j.optcom.2013.06.030

    Article  CAS  Google Scholar 

  17. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6(11):749–758. doi:10.1038/nphoton.2012.262

    Article  CAS  Google Scholar 

  18. Jablan M, Buljan H, Soljacic M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80(24):7. doi:10.1103/Physrevb.80.245435

    Article  Google Scholar 

  19. Backes WH, Peeters FM, Brosens F, Devreese JT (1992) Dispersion of longitudinal plasmons for a quasi-two-dimensional electron gas. Phys Rev B 45(15):8437–8442. doi:10.1103/PhysRevB.45.8437

    Article  CAS  Google Scholar 

  20. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907. doi:10.1021/nl0731872

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 61178008, 61275092), and the Fundamental Research Funds for the Central Universities, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guobin Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Ren, G., Gao, Y. et al. Magnetically Controlled Nanofocusing of a Graphene Plasmonic Lens. Plasmonics 13, 737–742 (2018). https://doi.org/10.1007/s11468-017-0566-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0566-5

Keywords

Navigation