, Volume 13, Issue 2, pp 715–726 | Cite as

Fabrication of Silver Chevron Arrays as an Efficient and Stable SERS Substrate: Implications in Biological Sensing

  • Melina Yarbakht
  • Maryam Nikkhah
  • Ahmad Moshaii
  • Sara Abbasian
  • Andrea Dellith


Although glancing angle deposited silver substrates offer an excellent figures for surface enhanced Raman scattering (SERS) sensing, the chemical instability issues of silver substrates upon exposure to the aqueous solutions is still challenging and limits their application in SERS-based biosensors. In this context, we applied and compared two different strategies including sodium citrate as a self-assembled monolayer (SAM), and thermal deposition of gold at different thicknesses to stabilize the silver chevron arrays deposited by the glancing angle deposition method. Although optical characterization confirms good stabilization in both strategies, intact morphological features can only be detected after gold coating compared to sodium citrate coating which makes a homogenous monolayer on the surface. Furthermore, the SERS intensity of Rhodamine B increases after these coating processes, which might be due to the less oxidation and deformation of the nanostructures on the substrate or improved attachment of the analyte to the substrates. This research can extend our knowledge for the development of stable and reproducible SERS substrates in the field of biological sensing.


Surface enhanced Raman spectroscopy Glancing angle deposition SERS substrates Plasmonic 



The support of the Research Council of Tarbiat Modares University is acknowledged. The authors also thank Leibniz Institute of Photonic Technology (IPHT) Jena, for SEM and EDX measurements.


  1. 1.
    Song C, Abell JL, He YS, Murph H, Cui Y, Zhao Y (2012) Gold-modified silver nanorod arrays: growth dynamics and improved SERS properties. J Mater Chem 22:1150–1159CrossRefGoogle Scholar
  2. 2.
    Cialla-may D, März A, Böhme R, Theil F, Weber K, Schmitt M, Popp J (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403(1):27–54CrossRefGoogle Scholar
  3. 3.
    Wei H, Xu H (2013) Hot spots in different metal nanostructures for plasmon enhanced Raman spectroscopy. Nano 5:10794–10805Google Scholar
  4. 4.
    Hao F, Nehl CL, Hafner JH, Nordlander P (2007) Plasmon resonances of a gold nanostar. Nano Lett 7(3):729–732CrossRefGoogle Scholar
  5. 5.
    Hrelescu C, Sau TK, Rogach AL, Jäckel F, Feldmann J (2009) Single gold nanostars enhance Raman scattering. Appl Phys Lett 94(15):153113 1–3CrossRefGoogle Scholar
  6. 6.
    Wei H, Reyes-Coronado A, Nordlander P, Aizpurua J, Xu H (2010) Multipolar plasmon resonances in individual Ag nanorice. ACS Nano 4:2649–2654CrossRefGoogle Scholar
  7. 7.
    Le Ru EC, Grand J, Sow I, Somerville WR, Etchegoin PG, Treguer-Delapierre M, Charron G, Félidj N, Lévi G, Aubard JA (2011) Scheme for detecting every single target molecule with surface-enhanced Raman spectroscopy. Nano Lett 11:5013–5019CrossRefGoogle Scholar
  8. 8.
    Carron KT, Xue G, Lewis ML (1991) A surface enhanced Raman spectroscopy study of the corrosion-inhibiting properties of benzimidazole and benzotriazole on copper. Langmuir 7(1):2–4CrossRefGoogle Scholar
  9. 9.
    Schlegel VL, Cotton TM (1991) Silver-Island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity. Anal Chem IQQI 63:241–247CrossRefGoogle Scholar
  10. 10.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670CrossRefGoogle Scholar
  11. 11.
    Nikoobakht B, El-Sayed MA (2003) Surface-enhanced Raman scattering studies on aggregated gold nanorods. J Phys Chem A 107(18):3372–3378CrossRefGoogle Scholar
  12. 12.
    Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105(24):5599–5611CrossRefGoogle Scholar
  13. 13.
    Radu AI, Ryabchykov O, Bocklitz TW, Huebner U, Weber K, Cialla-May D, Popp J (2016) Toward food analytics: fast estimation of lycopene and β-carotene content in tomatoes based on surface enhanced Raman spectroscopy (SERS). Analyst 141:4447–4455CrossRefGoogle Scholar
  14. 14.
    Patze S, Huebner U, Weber K, Cialla-May D, Popp J (2016) Top up plasmonic arrays for surface-enhanced Raman spectroscopy. Adv Mater Interfaces 3(1600549):1–8Google Scholar
  15. 15.
    Robbie K, Brett MJ (1997) Sculptured thin films and glancing angle deposition: growth mechanics and applications. J Vac Sci Technol A 15(3):1460–1465CrossRefGoogle Scholar
  16. 16.
    Yongzhi C, Chao W, Zhenjiang H, Fuli Y (1997) Application, theory and process of glancing angle deposition, 1–7
  17. 17.
    Hawkeye MM, Brett MJ (2007) Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films. J Vac Sci Technol A 25(5):1317–1335CrossRefGoogle Scholar
  18. 18.
    Robbie K, Beydaghyan G, Brown T, Dean C, Adams J, Buzea C (2004) Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure. Rev Sci Instrum 75(4):1089–1097CrossRefGoogle Scholar
  19. 19.
    Zhang X, Zhao J, Whitney AV, Elam JW, Van Duyne RP (2006) Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J Am Chem Soc 128:10304–10309CrossRefGoogle Scholar
  20. 20.
    Mahurin SM, Bao L, Dai S (2006) Controlled layer-by-layer formation of ultrathin oxide films on silver island films for surface enhanced Raman scattering measurement. Isr J Chem 46:329–336CrossRefGoogle Scholar
  21. 21.
    Rospendowski BN, Kelly K, Wolf CR, Smith WEJ (1991) Surface-enhanced resonance Raman scattering from cytochromes P-450 adsorbed on citrate-reduced silver sols. Am Chem Soc 113:1217–1225CrossRefGoogle Scholar
  22. 22.
    Bachenheimer L, Elliott P, Stagon S, Huang H (2014) Enhanced thermal stability of Ag nanorods through capping. Appl Phys Lett 97:213104 213104-4CrossRefGoogle Scholar
  23. 23.
    Shanmukh S, Jones L, Driskell J, Zhao Y, Dluhy R, Tripp RA (2006) Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod Array SERS substrate. Nano Lett 6(11):2630–2636CrossRefGoogle Scholar
  24. 24.
    Henderson KC, Benitez AJ, Ratliff AE, Crabb DM, Sheppard ES, Winchell JM, Dluhy RA, Waites KB, Atkinson TP, Krause DC (2015) Specificity and strain-typing capabilities of nanorod array-surface enhanced Raman spectroscopy for Mycoplasma pneumoniae detection. PloS One 10(6)Google Scholar
  25. 25.
    Driskell JD, Tripp RA (2010) Label-free SERS detection of microRNA based on affinity for an unmodified silver nanorod array substrate. Chem Commun 46:3298–3300CrossRefGoogle Scholar
  26. 26.
    Jiang R, Chen H, Shao L, Li Q, Wang J (2012) Unraveling the evolution and nature of the plasmons in (Au core)-(Ag shell) nanorods. Adv Mater 24:200–207Google Scholar
  27. 27.
    Ma L, Huang Y, Hou M, Xie Z, Zhang Z (2015) Silver nanorods wrapped with ultrathin Al2O3 layers exhibiting excellent SERS sensitivity and outstanding SERS stability. Sci Rep 5(12890):1–9Google Scholar
  28. 28.
    Fan JG, Zhao YP (2008) Gold-coated nanorod arrays as highly sensitive substrates for surface-enhanced Raman spectroscopy. Langmuir 24(70):14172–14175CrossRefGoogle Scholar
  29. 29.
    Zhou Q, He Y, Abell J, Zhang Z, Zhao Y (2011) Optical properties and surface enhanced Raman scattering of L-shaped silver nanorod arrays. J Phys Chem C 115:14131–14140CrossRefGoogle Scholar
  30. 30.
    Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57(3):783CrossRefGoogle Scholar
  31. 31.
    Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41CrossRefGoogle Scholar
  32. 32.
    Fernanda Cardinal M, Rodríguez-González B, Alvarez-Puebla RA, Pérez-Juste J, Liz-Marzán LM (2010) Modulation of localized surface plasmons and SERS response in gold dumbbells through silver coating. J Phys Chem C 114:10417–10423CrossRefGoogle Scholar
  33. 33.
    Gao C, Lu Z, Liu Y, Zhang Q, Chi M, Cheng Q, Yin Y (2012) Highly stable silver nanoplates for surface plasmon resonance biosensing. Angew Chem Int Ed 51:5629–5633CrossRefGoogle Scholar
  34. 34.
    Maiti KK, Dinish US, Fu CY, Lee JJ, Soh KS, Yun SW, Bhuvaneswari R, Olivo M, Chang YT (2010) Development of biocompatible SERS nanotag with increased stability by chemisorption of reporter molecule for in vivo cancer detection. Biosens Bioelectron 26:398–403CrossRefGoogle Scholar
  35. 35.
    Gutes A, Maboudian R, Carraro C (2012) Gold-coated silver dendrites as SERS substrates with an improved lifetime. Langmuir 28:17846–17850CrossRefGoogle Scholar
  36. 36.
    Han Y, Lupitskyy R, Chou TM, Stafford CM, Du H, Sukhishvili S (2011) Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation. Anal Chem 83:5873–5880CrossRefGoogle Scholar
  37. 37.
    Yadong Y, Li Z-Y, Zhong Z, Gates B, Xia Y, Venkateswaran S (2002) Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J Mater Chem 12:522–527CrossRefGoogle Scholar
  38. 38.
    Henglein A (1998) Colloidal silver nanoparticles: photochemical preparation and interaction with O2, CCl4, and some metal ions. Chem Mater 10(1):444–450CrossRefGoogle Scholar
  39. 39.
    Formo EV, Mahurin SM, Dai S (2010) Robust SERS substrates generated by coupling a bottom-up approach and atomic layer deposition. ACS Appl Mater Inter 2:1987–1991CrossRefGoogle Scholar
  40. 40.
    Bao L, Mahurin SM, Dai S (2004) Controlled layer-by-layer formation of ultrathin TiO2 on silver island films via a surface sol-gel method for surface-enhanced Raman scattering measurement. Anal Chem 76:4531–4536CrossRefGoogle Scholar
  41. 41.
    John JF, Mahurin S, Dai S, Sepaniak MJ (2010) Use of atomic layer deposition to improve the stability of silver substrates for in situ, high-temperature SERS measurements. J Raman Spectrosc 41:4–11CrossRefGoogle Scholar
  42. 42.
    Su X (2002) Covalent DNA immobilization on polymer-shielded silver-coated quartz crystal microbalance using photobiotin-based UV irradiation. Biochem Biophy Res Commun 290:962–966CrossRefGoogle Scholar
  43. 43.
    Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem B 86:3391–3395CrossRefGoogle Scholar
  44. 44.
    Fu J, Zhao YP (2008) Fine tune localized surface Plasmon resonance for chemical and biological sensors. Proc of SPIE 6959:695911–695911CrossRefGoogle Scholar
  45. 45.
    Zhou Q, Zhang X, Huang Y, Li Z, Zhao Y, Zhang Z (2012) Enhanced surface-enhanced Raman scattering performance by folding silver nanorods. Appl Phys Lett 100:113101CrossRefGoogle Scholar
  46. 46.
    Patzig C (2009) Glancing angle deposition of silicon nanostructures by ion beam sputtering, universität leipzigGoogle Scholar
  47. 47.
    Fleger Y, Rosenbluh M (2009) Surface plasmons and surface enhanced Raman spectra of aggregated and alloyed gold-silver nanoparticles. Research Letters in Optics 2009:1–5CrossRefGoogle Scholar
  48. 48.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  49. 49.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. John Wiley & Sons, New YorkGoogle Scholar
  50. 50.
    Haes AJ, Zou SL, Schatz GC, Van Duyne RP (2004) A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108(1):109–116CrossRefGoogle Scholar
  51. 51.
    Khlebtsov NG, Trachuk LA, Mel’nikov AG (2005) The effect of the size, shape, and structure of metal nanoparticles on the dependence of their optical properties on the refractive index of a disperse medium. Opt Spectrosk 98:77–83CrossRefGoogle Scholar
  52. 52.
    Miller MM, Lazarides AA (2005) Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B 109:21556–21565CrossRefGoogle Scholar
  53. 53.
    Jianguo F, Yiping Z (2010) Nanocarpet effect induced superhydrophobicity. Langmuir 26(11):8245–8250CrossRefGoogle Scholar
  54. 54.
    Fan JG, Zhao YP (2006) Characterization of watermarks formed in nano-carpet effect. Langmuir 22:3662–3671CrossRefGoogle Scholar
  55. 55.
    Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19(3):409–453CrossRefGoogle Scholar
  56. 56.
    Lau KKS, Bico J, Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, McKinley GH, Gleason KK (2003) Superhydrophobic carbon nanotube forests. Nano Lett 3:1701CrossRefGoogle Scholar
  57. 57.
    Fan JG, Dyer D, Zhang G, Zhao YP (2004) Nanocarpet effect: pattern formation during the wetting of vertically aligned nanorod arrays. Nano Lett 4(11):2133–2138CrossRefGoogle Scholar
  58. 58.
    Stoermer RL, Sioss JA, Keating CD (2005) Stabilization of silver metal in citrate buffer: barcoded nanowires and their bioconjugates. Chem Mater 17:4356–4361CrossRefGoogle Scholar
  59. 59.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRefGoogle Scholar
  60. 60.
    Aherne D, Charles DE, Brennan-Fournet ME, Kelly JM, Gun’ko YK (2009) Etching-resistant silver nanoprisms by epitaxial deposition of a protecting layer of gold at the edges. Langmuir 25(17):10165–10173CrossRefGoogle Scholar
  61. 61.
    Yüksel S, Ziegler M, Goerke S, Hübner U, Pollok K, Langenhorst F, Weber K, Cialla-May D, Popp J (2015) Background-free bottom-up plasmonic arrays with increased sensitivity, specificity and shelf life for SERS detection schemes. J Phys Chem C 119:13791–13798CrossRefGoogle Scholar
  62. 62.
    Pettenkofer C, Eickmans J, Ertork U, Otto A (1985) On the nature of “SERS active sites”. Surf Sci 151:9–36CrossRefGoogle Scholar
  63. 63.
    Zhang J, Li X, Sun X, Li Y (2005) Surface enhanced Raman scattering effects of silver colloids with different shapes. J Phys Chem B 109:12544–12548CrossRefGoogle Scholar
  64. 64.
    Leverette CL, Shubert VA, Wade TL, Varazo K, Dluhy RA (2002) Development of a novel dual-layer thick Ag substrate for surface-enhanced Raman scattering (SERS) of self-assembled monolayers. J Phys Chem B 106:8747–8755CrossRefGoogle Scholar
  65. 65.
    Erol M, Han Y, Stanley SK, Stafford CM, Du H, Sukhishvili S (2009) SERS not to be taken for granted in the presence of oxygen. J Am Chem Soc 131:7480–7481CrossRefGoogle Scholar
  66. 66.
    Pinkhasova P, Yang L, Zhang Y, Sukhishvili S, Du H (2012) Differential SERS activity of gold and silver nanostructures enabled by adsorbed poly(vinylpyrrolidone). Langmuir 28:2529–2535CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Melina Yarbakht
    • 1
  • Maryam Nikkhah
    • 1
  • Ahmad Moshaii
    • 2
  • Sara Abbasian
    • 2
  • Andrea Dellith
    • 3
  1. 1.Department of NanobiotechnologyTarbiat Modares UniversityTehranIran
  2. 2.Department of PhysicsTarbiat Modares UniversityTehranIran
  3. 3.Leibniz Institute of Photonic Technology (IPHT)JenaGermany

Personalised recommendations