Plasmonics

, Volume 13, Issue 2, pp 697–703 | Cite as

Tunable Spoof Surface Plasmons Bulleye Antenna

  • Zhuo Li
  • Chen Chen
  • Liangliang Liu
  • Jia Xu
  • Yunhe Sun
  • Bingzheng Xu
  • Hengyi Sun
  • Xinlei Chen
  • Changqing Gu
Article
  • 266 Downloads

Abstract

A tunable spoof surface plasmons antenna using sinusoidally modulated corrugated reactance surface based on a bulleye structure is proposed in this paper. The designed antenna is made of concentric metallic grooves etched on a metal plate, the depth of which is of sinusoidal periodic variation in the radial direction. This makes it possible that highly confined spoof surface plasmons along corrugated surface can be converted to radiation modes. The proposed bulleye antenna can work from 25.8 to 33 GHz and a bandwidth of 7.2 GHz and its main lobe can be directed at 30 from the vertical direction at 30 GHz. This antenna has a maximum gain of 15 dB and its main lobe can scan from 14 to 58 by tuning the frequency from 28 to 32 GHz.

Keywords

Spoof plasmons Spatial waves Conversion Bulleye structure Sinusoidal modulation 

Notes

Acknowledgments

This work was supported in part by the Fundamental Research Funds for the Central Universities under Grant No. NS2016039, the Foundation of State Key Laboratory of Millimeter Waves, Southeast University, China, under Grant No. K201603, the Natural Science Foundation of Jiangsu Province under Grant No. BK20151480, and the priority academic program development of Jiangsu Higher Education Institutions.

References

  1. 1.
    Maier SA (2007) Plasmonics:fundamentals and applications Springer Science & Business MediaGoogle Scholar
  2. 2.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  3. 3.
    Novotny L, Hecht B (2012) Principles of nano-optics Cambridge university pressGoogle Scholar
  4. 4.
    Verhagen E, Polman A, Kuipers LK (2008) Nanofocusing in laterally tapered plasmonic waveguides. Opt Express 16:45–57CrossRefGoogle Scholar
  5. 5.
    Stewart ME, Anderton CR, Thompson LB, et al. (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521CrossRefGoogle Scholar
  6. 6.
    Pendry JB, Martin-Moreno L, Garcia-Vidal FJ (2004) Mimicking surface plasmons with structured surfaces. Science 305:847– 848CrossRefGoogle Scholar
  7. 7.
    Maier SA, Andrews SR, Martin-Moreno L, et al. (2006) Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys Rev Lett 97:176805CrossRefGoogle Scholar
  8. 8.
    De Abajo FJG, Senz JJ (2005) Electromagnetic surface modes in structured perfect-conductor surfaces. Phys Rev Lett 95:233901CrossRefGoogle Scholar
  9. 9.
    Fernandez-Dominguez AI, Martin-Moreno L, Garcia-Vidal FJ, et al. (2008) Spoof surface plasmon polariton modes propagating along periodically corrugated wires. IEEE J Sel Top Quantum Electron 14:1515–1521CrossRefGoogle Scholar
  10. 10.
    Ma HF, Shen X, Cheng Q, et al. (2014) Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev 8:146–151CrossRefGoogle Scholar
  11. 11.
    Liu L, Li Z, Gu C, et al. (2015) Smooth bridge between guided waves and spoof surface plasmon polaritons. Opt Lett 40:1810–1813CrossRefGoogle Scholar
  12. 12.
    Yin JY, Ren J, Zhang HC, et al. (2015) Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure. Sci Report 5:8165CrossRefGoogle Scholar
  13. 13.
    Xu J, Li Z, Liu L, et al. (2016) Low-pass plasmonic filter and its miniaturization based on spoof surface plasmon polaritons. Opt Commun 372:155–159CrossRefGoogle Scholar
  14. 14.
    Shibayama J, Yamauchi J, Nakano H (2015) Metal disc-type splitter with radially placed gratings for terahertz surface waves. Electron Lett 51:352–353CrossRefGoogle Scholar
  15. 15.
    Oliner AA, Jackson DR, Volakis JL (2007) Antenna engineering handbook McGraw HillGoogle Scholar
  16. 16.
    Yin JY, Zhang HC, Fan Y, et al. (2016) Direct radiations of surface plasmon polariton waves by gradient groove depth and flaring metal structure. IEEE Antennas Wirel Propag Lett 15:865– 868CrossRefGoogle Scholar
  17. 17.
    Xu JJ, Zhang HC, Zhang Q, et al. (2015) Efficient conversion of surface-plasmon-like modes to spatial radiated modes. Appl Phys Lett 106:021102CrossRefGoogle Scholar
  18. 18.
    Oliner A, Hessel A (1959) Guided waves on sinusoidally-modulated reactance surfaces. IRE Trans Anntenas Propag 7:201–208CrossRefGoogle Scholar
  19. 19.
    Panaretos AH, Werner DH (2016) Spoof plasmon radiation using sinusoidally modulated corrugated reactance surfaces. Opt Express 24:2443–2456CrossRefGoogle Scholar
  20. 20.
    Kong GS, Ma HF (2015) Omnidirectional antenna based on modulated spoof surface plasmon polaritons waveguide, 2015 Asia-Pacific Microwave Conference (APMC). IEEE 3:1–3Google Scholar
  21. 21.
    Monnai Y, Jahn D, Withayachumnankul W, et al. (2015) Terahertz plasmonic Bessel beamformer. Appl Phys Lett 106:021101CrossRefGoogle Scholar
  22. 22.
    Ishimaru A (2015) A, Electromagnetic wave propagation, radiation, and scattering Prentice-HallGoogle Scholar
  23. 23.
    Harrington RF (2001) Time-Harmonic Electromagnetic Fields, Wiley-IEEEGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Zhuo Li
    • 1
    • 2
  • Chen Chen
    • 1
  • Liangliang Liu
    • 1
  • Jia Xu
    • 1
  • Yunhe Sun
    • 1
  • Bingzheng Xu
    • 1
  • Hengyi Sun
    • 1
  • Xinlei Chen
    • 1
  • Changqing Gu
    • 1
  1. 1.Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, College of Electronic and Information EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.State Key Laboratory of Millimeter WavesSoutheast UniversityNanjingChina

Personalised recommendations