, Volume 13, Issue 2, pp 653–659 | Cite as

Tunable Multichannel Plasmonic Filter Based on a Single Graphene Sheet on a Fibonacci Quasiperiodic Structure

  • Yuncai Feng
  • Youwen Liu
  • Xiaohua Wang
  • Daxing Dong
  • Yaoyao Shi
  • Liangzun Tang


We propose a tunable multichannel plasmonic mid-infrared filter of a single graphene sheet depositing on a Fibonacci quasiperiodic structure. The transmission spectra are numerically analyzed by a finite-difference time-domain (FDTD) method, and the results show that the filtering properties of the proposed structure can be tuned by the chemical potentials of graphene, the width and depth of air grooves, and the refractive index of the substrate. The simulation results are discussed analytically by deducing the dispersion relation of surface plasmon polariton propagating on four layers structure of air/graphene/air/dielectric. The proposed structure may find potential applications in tunable filters, sensors, and integrated photonic circuits.


Surface plasmon polaritons Graphene Fibonacci quasiperiodic structure Multichannel filter 



This work was partially supported by the National Natural Foundation of China under Grant No. 11174147, the Funds from the Postgraduate Creative Base in Nanjing University of Aeronautics and Astronautics under Grant No. kfjj20160806, and the Funds from Jiangsu Innovation Program for Graduate Education under Grant No. KYZZ16_0167.


  1. 1.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830CrossRefGoogle Scholar
  2. 2.
    Lin X-S, Huang X-G (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33(23):2874–2876CrossRefGoogle Scholar
  3. 3.
    Tao J et al (2009) A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. Opt Express 17(16):13989–13994CrossRefGoogle Scholar
  4. 4.
    Lin X, Huang X (2009) Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter. JOSA B 26(7):1263–1268CrossRefGoogle Scholar
  5. 5.
    Wen K-H et al (2012) Spectral characteristics of plasmonic metal–insulator–metal waveguides with a tilted groove. Photonics Journal, IEEE 4(5):1794–1800CrossRefGoogle Scholar
  6. 6.
    Veronis G, Fan S (2008) Crosstalk between three-dimensional plasmonic slot waveguides. Opt Express 16(3):2129–2140CrossRefGoogle Scholar
  7. 7.
    Walasik W, Rodriguez A, Renversez G (2015) Symmetric plasmonic slot waveguides with a nonlinear dielectric core: bifurcations, size effects, and higher order modes. Plasmonics 10(1):33–38CrossRefGoogle Scholar
  8. 8.
    Minovich AE et al (2014) Airy plasmons: non-diffracting optical surface waves. Laser Photonics Rev 8(2):221–232CrossRefGoogle Scholar
  9. 9.
    Yu N et al (2010) Designer spoof surface plasmon structures collimate terahertz laser beams. Nat Mater 9(9):730–735CrossRefGoogle Scholar
  10. 10.
    Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539CrossRefGoogle Scholar
  11. 11.
    Wong WR, Adikan FRM, Berini P (2015) Long-range surface plasmon Y-junctions for referenced biosensing. Opt Express 23(24):31098–31108CrossRefGoogle Scholar
  12. 12.
    Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332(6035):1291–1294CrossRefGoogle Scholar
  13. 13.
    Bonaccorso F et al (2010) Graphene photonics and optoelectronics. Nat Photonics 4(9):611–622CrossRefGoogle Scholar
  14. 14.
    Liu M et al (2011) A graphene-based broadband optical modulator. Nature 474(7349):64–67CrossRefGoogle Scholar
  15. 15.
    Christensen J et al (2011) Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6(1):431–440CrossRefGoogle Scholar
  16. 16.
    Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5):3677–3694CrossRefGoogle Scholar
  17. 17.
    Efetov DK, Kim P (2010) Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys Rev Lett 105(25):256805CrossRefGoogle Scholar
  18. 18.
    Zhang Y et al (2013) Broadband high photoresponse from pure monolayer graphene photodetector. Nat Commun 4:1811CrossRefGoogle Scholar
  19. 19.
    Wang B et al (2012) Optical coupling of surface plasmons between graphene sheets. Appl Phys Lett 100(13):131111CrossRefGoogle Scholar
  20. 20.
    Gómez-Díaz J-S, Perruisseau-Carrier J (2013) Graphene-based plasmonic switches at near infrared frequencies. Opt Express 21(13):15490–15504CrossRefGoogle Scholar
  21. 21.
    Tao J et al (2014) Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth. Opt Lett 39(2):271–274CrossRefGoogle Scholar
  22. 22.
    Nasari H, Abrishamian MS (2015) Nonlinear manipulation of surface plasmon polaritons in graphene-based Bragg reflector. J Lightwave Technol 33(19):4071–4078CrossRefGoogle Scholar
  23. 23.
    Li H-J et al (2013) Investigation of the graphene based planar plasmonic filters. Appl Phys Lett 103(21):211104CrossRefGoogle Scholar
  24. 24.
    Li H-J et al (2014) Tunable mid-infrared plasmonic band-pass filter based on a single graphene sheet with cavities. J Appl Phys 116(22):224505CrossRefGoogle Scholar
  25. 25.
    Lu WB et al (2013) Flexible transformation plasmonics using graphene. Opt Express 21(9):10475–10482CrossRefGoogle Scholar
  26. 26.
    Chen J et al (2012) Optical nano-imaging of gate-tunable graphene plasmons. Nature 487(7405):77–81CrossRefGoogle Scholar
  27. 27.
    Fei Z et al (2012) Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487(7405):82–85CrossRefGoogle Scholar
  28. 28.
    Mikhailov S, Ziegler K (2007) New electromagnetic mode in graphene. Phys Rev Lett 99(1):016803CrossRefGoogle Scholar
  29. 29.
    Bludov YV et al (2014) Nonlinear TE-polarized surface polaritons on graphene. Phys Rev B 89(3):035406CrossRefGoogle Scholar
  30. 30.
    Kohmoto M, Sutherland B, Iguchi K (1987) Localization of optics: quasiperiodic media. Phys Rev Lett 58(23):2436CrossRefGoogle Scholar
  31. 31.
    Gellermann W et al (1994) Localization of light waves in Fibonacci dielectric multilayers. Phys Rev Lett 72(5):633CrossRefGoogle Scholar
  32. 32.
    Yan H et al (2013) Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photonics 7(5):394–399CrossRefGoogle Scholar
  33. 33.
    Gao W et al (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6(9):7806–7813CrossRefGoogle Scholar
  34. 34.
    Xiao S et al (2016) Tunable light trapping and absorption enhancement with graphene ring arrays. Phys Chem Chem Phys 18(38)Google Scholar
  35. 35.
    Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):064302CrossRefGoogle Scholar
  36. 36.
    Gusynin V, Sharapov S, Carbotte J (2006) Magneto-optical conductivity in graphene. J Phys Condens Matter 19(2):026222CrossRefGoogle Scholar
  37. 37.
    Jablan M, Buljan H, and Soljačić M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80(24)Google Scholar
  38. 38.
    Vardeny ZV, Nahata A, Agrawal A (2013) Optics of photonic quasicrystals. Nat Photonics 7(3):177–187CrossRefGoogle Scholar
  39. 39.
    Singh BK, Pandey PC (2016) Effect of temperature on terahertz photonic and omnidirectional band gaps in one-dimensional quasi-periodic photonic crystals composed of semiconductor InSb. Appl Opt 55(21):5684–5692CrossRefGoogle Scholar
  40. 40.
    Wu J-J, Gao J-X (2012) Transmission properties of Fibonacci quasi-periodic one-dimensional superconducting photonic crystals. Optik-International Journal for Light and Electron Optics 123(11):986–988CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yuncai Feng
    • 1
  • Youwen Liu
    • 1
  • Xiaohua Wang
    • 1
  • Daxing Dong
    • 1
  • Yaoyao Shi
    • 1
  • Liangzun Tang
    • 1
  1. 1.Department of Applied PhysicsNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China

Personalised recommendations