, Volume 13, Issue 2, pp 623–630 | Cite as

Tunability of Multipolar Plasmon Resonances and Fano Resonances in Bimetallic Nanoshells

  • Hang Zhou
  • Dongliang Gao
  • Lei Gao


We study the multipolar surface plasmon modes and its link to Fano resonances in bimetallic nanoparticles. General expressions for the multipolar surface plasmon frequencies and damping rates are analytically derived by long-wave approximation. The results are in agreement with that from plasmon hybridization model for nanoshell system. Numerical results show that the surface plasmon resonances and damping rates for Au/Ag and Ag/Au nanoshells exhibit quite different behavior with the increase of shell thickness. In addition, both the near-field diagram and the far-field quantity are theoretically investigated. Fano resonances of scattering efficiency by Ag/Au core-shell nanoparticles occur due to the dipole-dipole coupling. The asymmetry of Fano profiles can be tuned by adjusting the size ratio of the core and the shell. Our results may found some potential applications in optical devices and biomedicine.


Surface plasmon Fano resonances Core-shell bimetallic nanopaticles 



This work was supported by the National Natural Science Foundation of China (Grant No. 11374223, No. 11504252), the National Science of Jiangsu Province (Grant No. BK20161210), the Natural Science Foundation for the Youth of Jiangsu Province (No. BK20150306), the Qing Lan project, “333” project (Grant No. BRA2015353), the Natural Science Foundation for Colleges and Universities in Jiangsu Province of China (No. 15KJB140008), and the PAPD of Jiangsu Higher Education Institutions.


  1. 1.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  2. 2.
    Maier SA. Plasmonics: fundamentals and applications. Springer Science & Business Media, 2007.Google Scholar
  3. 3.
    Zhang J, Zhang L (2012) Nanostructures for surface plasmons. Adv Opt Photonics 4:157–321CrossRefGoogle Scholar
  4. 4.
    Kolwas K, Derkachova A, Shopa M (2009) Size characteristics of surface plasmons and their manifestation in scattering properties of metal particles. J Quant Spectrosc Ra 110:1490–1501CrossRefGoogle Scholar
  5. 5.
    Wu T, Yang S, Tan W, Li X (2016) Tunable localized hybrid plasmon modes and Fano resonances in Au core-semishell. Plasmonics 11:1351–1359CrossRefGoogle Scholar
  6. 6.
    Bakhti S, Destouches N, Tishchenko AV (2015) Singular representation of plasmon resonance modes to optimize the near-and far-field properties of metal nanoparticles. Plasmonics 10:1391–1399CrossRefGoogle Scholar
  7. 7.
    Tribelsky MI, Luk'yanchuk BS (2006) Anomalous light scattering by small particles. Phys Rev Lett 97:263902CrossRefGoogle Scholar
  8. 8.
    Qiu C, Gao L, Joannopoulos JD, Soljačić M (2010) Light scattering from anisotropic particles: propagation, localization, and nonlinearity. Laser Photon Rev 4:268–282CrossRefGoogle Scholar
  9. 9.
    Hu Y, Noelck SJ, Drezek RA (2010) Symmetry breaking in gold-silica-gold multilayer nanoshells. ACS Nano 4:1521–1528CrossRefGoogle Scholar
  10. 10.
    Bardhan R, Grady NK, Ali T, Halas NJ (2010) Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties. ACS Nano 4:6169–6179CrossRefGoogle Scholar
  11. 11.
    Yin YD, Gao L, Qiu CW (2011) Electromagnetic theory of tunable SERS manipulated with spherical anisotropy in coated nanoparticles. J Phys Chem Lett C 115:8893–8899CrossRefGoogle Scholar
  12. 12.
    Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422CrossRefGoogle Scholar
  13. 13.
    Prodan E, Nordlander P (2004) Plasmon hybridization in spherical nanoparticles. J Chem Phys 120:5444–5454CrossRefGoogle Scholar
  14. 14.
    Teperik T, Popov V, de Abajo FG (2004) Radiative decay of plasmons in a metallic nanoshell. Phys Rev B 69:155402CrossRefGoogle Scholar
  15. 15.
    Hodak JH, Henglein A, Giersig M, Hartland GV (2000) Laser-induced inter-diffusion in AuAg core- shell nanoparticles. J Phys Chem B 104:11708–11718CrossRefGoogle Scholar
  16. 16.
    Lee AF, Baddeley CJ, Hardacre C, Ormerod RM, Lambert RM, Schmid G et al (1995) Structural and catalytic properties of novel Au/Pd bimetallic colloid particles: Exafs, Xrd, and acetylene coupling. J Phys Chem 99:6096–6102CrossRefGoogle Scholar
  17. 17.
    Kumar GVP, Shruthi S, Vibha B, Reddy BAA, Kundu TK, Narayana C (2007) Hot spots in Ag core- Au shell nanoparticles potent for surface-enhanced Raman scattering studies of biomolecules. J Phys Chem C 111:4388–4392CrossRefGoogle Scholar
  18. 18.
    Otanicar TP, DeJarnette D, Hewakuruppu Y, Taylor RA (2016) Filtering light with nanoparticles: a review of optically selective particles and applications. Adv Opt Photonics 8:541CrossRefGoogle Scholar
  19. 19.
    Zhu J, Li J-J, Zhao J-W (2014) The effect of dielectric coating on the local electric field enhancement of Au-Ag core-shell nanoparticles. Plasmonics 10:1–8CrossRefGoogle Scholar
  20. 20.
    Lu L, Wang H, Zhou Y, Xi S, Zhang H, Hu J, et al. (2002) Seed-mediated growth of large, monodisperse core-shell gold-silver nanoparticles with Ag-like optical properties. Chem Commun (Camb) 144–145Google Scholar
  21. 21.
    Rivas L, Sanchez-Cortes S, Garcia-Ramos JV, Morcillo G (2000) Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity. Langmuir 16:9722–9728CrossRefGoogle Scholar
  22. 22.
    Hao E, Li SY, Bailey RC, Zou SL, Schatz GC, Hupp JT (2004) Optical properties of metal nanoshells. J Phys Chem B 108:1224–1229CrossRefGoogle Scholar
  23. 23.
    Wu DJ, Xu XD, Liu XJ (2008) Electric field enhancement in bimetallic gold and silver nanoshells. Solid State Commun 148:163–167CrossRefGoogle Scholar
  24. 24.
    Stoll T, Maioli P, Crut A, Burgin J, Langot P, Pellarin M et al (2015) Ultrafast acoustic vibrations of bimetallic nanoparticles. J Phys Chem Lett C 119:1591–1599CrossRefGoogle Scholar
  25. 25.
    Ma P, Gao D, Ni Y, Gao L (2015) Enhancement of optical nonlinearity by core-shell bimetallic nanostructures. Plasmonics 11:183–187CrossRefGoogle Scholar
  26. 26.
    Tribelsky MI, Flach S, Miroshnichenko AE, Gorbach AV, Kivshar YS (2008) Light scattering by a finite obstacle and Fano resonances. Phys Rev Lett 100:043903CrossRefGoogle Scholar
  27. 27.
    Hao F, Sonnefraud Y, Van Dorpe P, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8:3983–3988CrossRefGoogle Scholar
  28. 28.
    Zhang J, Zayats A (2013) Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures. Opt Express 21:8426–8436CrossRefGoogle Scholar
  29. 29.
    Qian J, Chen Z, Wang W, Li Y, Xu J, Sun Q (2014) Dual symmetry breaking in gold-silica-gold multilayer nanoshells. Plasmonics 9:1361–1369CrossRefGoogle Scholar
  30. 30.
    Chen H, Liu S, Zi J, Lin Z (2015) Fano resonance-induced negative optical scattering force on plasmonic nanoparticles. ACS Nano 9:1926–1935CrossRefGoogle Scholar
  31. 31.
    Liu W, Miroshnichenko AE, Oulton RF, Neshev DN, Hess O, Kivshar YS (2013) Scattering of core-shell nanowires with the interference of electric and magnetic resonances. Opt Lett 38:2621–2624CrossRefGoogle Scholar
  32. 32.
    Li Z, Zhang S, Tong L, Wang P, Dong B, Xu H (2014) Ultrasensitive size-selection of plasmonic nanoparticles by Fano interference optical force. ACS Nano 8:701–708CrossRefGoogle Scholar
  33. 33.
    Li BQ, Liu C (2011) Long-wave approximation for hybridization modeling of local surface plasmonic resonance in nanoshells. Opt Lett 36:247–249CrossRefGoogle Scholar
  34. 34.
    Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1:641–648CrossRefGoogle Scholar
  35. 35.
    Derkachova A, Kolwas K (2007) Size dependence of multipolar plasmon resonance frequencies and damping rates in simple metal spherical nanoparticles. Eur Phys J-Spec Top 144:93–99CrossRefGoogle Scholar
  36. 36.
    Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B 16:1824–1832CrossRefGoogle Scholar
  37. 37.
    van de Hulst H.C. (1981) Light Scattering by Small Particles.Google Scholar
  38. 38.
    Steinbrück A, Csáki A, Festag G, Fritzsche W (2006) Preparation and optical characterization of core–shell bimetal nanoparticles. Plasmonics 1:79–85CrossRefGoogle Scholar
  39. 39.
    Zhu J (2009) Surface plasmon resonance from bimetallic interface in Au–Ag core–shell structure nanowires. Nanoscale Res Lett 4:977CrossRefGoogle Scholar
  40. 40.
    Kottmann JP, Martin OJF, Smith DR, Schultz S (2000) Field polarization and polarization charge distributions in plasmon resonant nanoparticles. New J Phys 2:27–27CrossRefGoogle Scholar
  41. 41.
    Jian Z, Jian-jun L, Jun-wu Z (2011) Tuning the dipolar plasmon hybridization of multishell metal-dielectric nanostructure: gold nanosphere in a gold nanoshell. Plasmonics 6:527–534CrossRefGoogle Scholar
  42. 42.
    Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Del Fatti N, Vallee F et al (2008) Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles. Phys Rev Lett 101:197401CrossRefGoogle Scholar
  43. 43.
    Penarodriguez O, Pal U (2011) Au@Ag core–shell nanoparticles: efficient all-plasmonic Fano-resonance generators. Nanoscale 3:3609–3612CrossRefGoogle Scholar
  44. 44.
    Miroshnichenko AE (2010) Off-resonance field enhancement by spherical nanoshells. Phys Rev A 81:053818CrossRefGoogle Scholar
  45. 45.
    Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866–1878CrossRefGoogle Scholar
  46. 46.
    Galli M, Portalupi SL, Belotti M, Andreani LC, O’Faolain L, Krauss TF (2009) Light scattering and Fano resonances in high-Q photonic crystal nanocavities. Appl Phys Lett 94:071101CrossRefGoogle Scholar
  47. 47.
    Qiu CW, Gao L (2008) Resonant light scattering by small coated nonmagnetic spheres: magnetic resonances, negative refraction, and prediction. J Opt Soc Am B 25:1728–1737CrossRefGoogle Scholar
  48. 48.
    Albaladejo S, Gómez-Medina R, Froufe-Pérez LS, Marinchio H, Carminati R, Torrado J et al (2010) Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle. Opt Express 18:3556–3567CrossRefGoogle Scholar
  49. 49.
    Alù A, Engheta N (2010) How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem? J Nanophotonics 4:041590CrossRefGoogle Scholar
  50. 50.
    Garcia-Camara B, Alcaraz de la Osa R, Saiz JM, Gonzalez F, Moreno F (2011) Directionality in scattering by nanoparticles: Kerker’s null-scattering conditions revisited. Opt Lett 36:728–730CrossRefGoogle Scholar
  51. 51.
    McMahon JM, Gray SK, Schatz GC (2009) Nonlocal optical response of metal nanostructures with arbitrary shape. Phys Rev Lett 103:097403CrossRefGoogle Scholar
  52. 52.
    Raza S, Toscano G, Jauho A-P, Wubs M, Mortensen NA (2011) Unusual resonances in nanoplasmonic structures due to nonlocal response. Phys Rev B 84:121412CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhouChina

Personalised recommendations