Plasmonics

, Volume 13, Issue 2, pp 609–616 | Cite as

Tunable Plasmon-Induced Transparency Effect in MIM Side-Coupled Isosceles Trapezoid Cavities System

Article

Abstract

We propose a plasmonic structure based on the metal-insulator-metal waveguide with the side-coupled isosceles trapezoid cavities. Both of the structures based on the side-coupled trapezoid cavities separated or connected with waveguides can realize the plasmon-induced transparency (PIT). By adjusting the structure parameters, the off-to-on PIT response can be tunably achieved. The coupled mode theory (CMT) method is used to study the PIT phenomenon and explain the transmission characteristics. This work may provide a potential way for designing highly integrated photonic devices.

Keywords

Metal-insulator-metal Plasmon-induced transparency Trapezoid nanocavity Finite element method Coupled mode theory 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11504139, 11504140), the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20140167, BK20140128), the Fundamental Research Funds for the Central Universities (Grant Nos. JUSRP115A15, JUSRP51628B), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 16KJB140016), and the Nature Science Foundation of Xuzhou Institute of Technology (Grant No. XKY2014206).

References

  1. 1.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface Plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  2. 2.
    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91CrossRefGoogle Scholar
  3. 3.
    Neutens P, Van Dorpe P, De Vlaminck I, Lagae L, Borghs G (2009) Electrical detection of confined gap plasmons in metal–insulator–metal waveguides. Nat Photonics 3(5):283–286CrossRefGoogle Scholar
  4. 4.
    Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445(7123):39–46CrossRefGoogle Scholar
  5. 5.
    Li P, Yang X, Maß TW, Hanss J, Lewin M, Michel AKU, Taubner T (2016) Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. Nat Mater 15:870–875CrossRefGoogle Scholar
  6. 6.
    Yu Z, Veronis G, Fan S, Brongersma ML (2008) Gain-induced switching in metal-dielectric-metal plasmonic waveguides. Appl Phys Lett 92(4):041117CrossRefGoogle Scholar
  7. 7.
    Yanik MF, Fan S, Soljačić M, Joannopoulos JD (2003) All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. Opt Lett 28(24):2506–2508CrossRefGoogle Scholar
  8. 8.
    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348CrossRefGoogle Scholar
  9. 9.
    Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8(11):867–871CrossRefGoogle Scholar
  10. 10.
    Mesch M, Metzger B, Hentschel M, Giessen H (2016) Nonlinear plasmonic sensing. Nano Lett 16(5):3155–3159CrossRefGoogle Scholar
  11. 11.
    Lin XS, Huang XG (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33(23):2874–2876CrossRefGoogle Scholar
  12. 12.
    Grant J, McCrindle IJ, Cumming DR (2016) Multi-spectral materials: hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber. Opt Express 24(4):3451–3463CrossRefGoogle Scholar
  13. 13.
    Lee T, Lee D, Kwon S (2015) Dual-function metal-insulator-metal plasmonic optical filter. IEEE Photon J 7:2387254Google Scholar
  14. 14.
    Chen J, Li Y, Chen Z, Peng J, Qian J, Xu J, Sun Q (2014) Tunable resonances in the plasmonic split-ring resonator. IEEE Photon J 6:1–6Google Scholar
  15. 15.
    Wurtz GA, Pollard R, Zayats AV (2006) Optical bistability in nonlinear surface-plasmon polaritonic crystals. Phys Rev Lett 97(5):057402CrossRefGoogle Scholar
  16. 16.
    Wurtz GA, Pollard R, Hendren W, Wiederrecht GP, Gosztola DJ, Podolskiy VA, Zayats AV (2011) Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat Nanotechnol 6(2):107–111CrossRefGoogle Scholar
  17. 17.
    Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photon 6(11):737–748CrossRefGoogle Scholar
  18. 18.
    Hosseini A, Massoud Y (2006) A low-loss metal-insulator-metal plasmonic bragg reflector. Opt Express 14(23):11318–11323CrossRefGoogle Scholar
  19. 19.
    Zand I, Bahramipanah M, Abrishamian MS, Liu JM (2012) Metal-insulator-metal nanoscale loop-stub structures. IEEE Photon J 4:2136–2142CrossRefGoogle Scholar
  20. 20.
    Wen K, Hu Y, Chen L, Zhou J, Lei L, Guo Z (2015) Fano resonance with ultra-high figure of merits based on plasmonic metal-insulator-metal waveguide. Plasmonics 10(1):27–32CrossRefGoogle Scholar
  21. 21.
    Woolf D, Loncar M, Capasso F (2009) The forces from coupled surface plasmon polaritons in planar waveguides. Opt Express 17(22):19996–20011CrossRefGoogle Scholar
  22. 22.
    Bozhevolnyi SI, Volkov VS, Devaux E, Ebbesen TW (2005) Channel plasmon-polariton guiding by subwavelength metal grooves. Phys Rev Lett 95(4):046802CrossRefGoogle Scholar
  23. 23.
    Novotny L, Hafner C (1994) Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys Rev E 50(5):4094CrossRefGoogle Scholar
  24. 24.
    Veronis G, Fan S (2005) Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl Phys Lett 87(13):131102CrossRefGoogle Scholar
  25. 25.
    Han Z, Forsberg E, He S (2007) Surface plasmon bragg gratings formed in metal-insulator-metal waveguides. IEEE Photon Technol Lett 19(2):91–93CrossRefGoogle Scholar
  26. 26.
    Wang T, Wen X, Yin C, Wang H (2009) The transmission characteristics of surface plasmon polaritons in ring resonator. Opt Express 17:24096–24101CrossRefGoogle Scholar
  27. 27.
    Han Z, Bozhevolnyi SI (2011) Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Opt Express 19(4):3251–3257CrossRefGoogle Scholar
  28. 28.
    Lu H, Liu X, Mao D, Wang L, Gong Y (2010) Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt Express 18(17):17922–17927CrossRefGoogle Scholar
  29. 29.
    Song C, Qu S, Wang J, Tang B, Xia X, Liang X, Lu Y (2015) Plasmonic tunable filter based on trapezoid resonator waveguide. J Mod Opt 62(17):1400–1404CrossRefGoogle Scholar
  30. 30.
    Boller KJ, Imamoğlu A, Harris SE (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66(20):2593CrossRefGoogle Scholar
  31. 31.
    Chen J, Li Z, Yue S, Xiao J, Gong Q (2012) Plasmon-induced transparency in asymmetric T-shape single slit. Nano Lett 12(5):2494–2498CrossRefGoogle Scholar
  32. 32.
    Biswas S, Duan J, Nepal D, Park K, Pachter R, Vaia RA (2013) Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers. Nano Lett 13(12):6287–6291CrossRefGoogle Scholar
  33. 33.
    Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101(4):047401CrossRefGoogle Scholar
  34. 34.
    Wang G, Lu H, Liu X (2012) Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency. Opt Express 20(19):20902–20907CrossRefGoogle Scholar
  35. 35.
    Wang J, Sun L, Hu ZD, Liang X, Liu C (2014) Plasmonic-induced transparency of unsymmetrical grooves shaped metal–insulator–metal waveguide. AIP Adv 4(12):123006CrossRefGoogle Scholar
  36. 36.
    Feng J, Siu VS, Roelke A, Mehta V, Rhieu SY, Palmore GTR, Pacifici D (2012) Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing. Nano Lett 12(2):602–609CrossRefGoogle Scholar
  37. 37.
    Lu H, Liu X, Mao D, Gong Y, Wang G (2011) Induced transparency in nanoscale plasmonic resonator systems. Opt Lett 16(2):3233–3235CrossRefGoogle Scholar
  38. 38.
    Wang Y, Wang T, Han X, Zhu Y, Wang B (2016) Plasmon-induced transparency effect in metal-insulator-metal waveguide coupled with multiple dark and bright nanocavities. Opt Engineering 55(2):027108CrossRefGoogle Scholar
  39. 39.
    Liu D, Sun Y, Fan Q, Mei M, Wang J, Pan Y, Lu J (2016) Tunable plasmonically induced transparency with asymmetric multi-rectangle resonators. Plasmonics 11(6):1621–1628CrossRefGoogle Scholar
  40. 40.
    Tang B, Wang J, Xia X, Liang X, Song C, Qu S (2015) Plasmonic-induced transparency and unidirectional control based on the waveguide structure with quadrant ring resonators. Appl Phys Express 8:032202CrossRefGoogle Scholar
  41. 41.
    Li Q, Wang T, Su Y, Yan M, Qiu M (2010) Coupled mode theory analysis of mode-splitting in coupled cavity system. Opt Express 18(8):8367–8382CrossRefGoogle Scholar
  42. 42.
    Yariv A (1973) Coupled-mode theory for guided-wave optics. IEEE J Quantum Elect 9(9):919–933 9CrossRefGoogle Scholar
  43. 43.
    Zhang Z, Luo L, Xue C, Zhang W, Yan S (2016) Fano resonance based on metal-insulator-metal waveguide coupled double rectangular cavities for plasmonic nanosensors. Sensors 16(5):642CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Science, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and TechnologyJiangnan UniversityWuxiChina
  2. 2.School of Mathematics & Physics ScienceXuzhou Institute of TechnologyXuzhouChina

Personalised recommendations