Advertisement

Plasmonics

, Volume 13, Issue 2, pp 591–597 | Cite as

Novel Multi-Broadband Plasmonic Absorber Based on a Metal-Dielectric-Metal Square Ring Array

  • Habib Ullah
  • Adnan Daud Khan
  • Muhammad Noman
  • Anees Ur Rehman
Article

Abstract

We numerically analyzed a simple and novel design of multi-broadband plasmonic absorber which consists of a planar array of thin gold square ring structures on dielectric/metal substrate. Several optimized designs of the metasurface screen are proposed to absorb wide range of the electromagnetic spectrum, which includes single ring, single split ring, ring inside split ring, and dual split ring resonators, respectively. Moreover, simulation results demonstrate that by changing the dimensions of the metasurface screen and the middle dielectric spacer, multi-broadband absorption resonant peaks having absorption bandwidth of about 570 nm above 50% absorption and bandwidth of about 93 nm above 90% absorption are obtained in the visible and near-infrared regime. The proposed design has potential applications in imaging and detection.

Keywords

Split ring Metamaterial absorber Perfect absorption Multi-broadband 

References

  1. 1.
    Yu P, Wu J, Ashalley E, Govorov A, Wang Z (2016) Dual-band absorber for multispectral plasmon-enhanced infrared photodetection. J Phys D Appl Phys 49:365101CrossRefGoogle Scholar
  2. 2.
    Landy N, Bingham C, Tyler T, Jokerst N, Smith D, Padilla W (2009) Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys Rev B 79:125104CrossRefGoogle Scholar
  3. 3.
    Khan AD, Miano G (2013) Plasmonic Fano resonances in single-layer gold conical nanoshells. Plasmonics 8:1429–1437CrossRefGoogle Scholar
  4. 4.
    Khan AD, Khan SD, Khan R, Ahmad N, Ali A, Khalil A, Khan FA (2014) Generation of multiple Fano resonances in plasmonic split nanoring dimer. Plasmonics 9:1091–1102CrossRefGoogle Scholar
  5. 5.
    Khan AD (2016) Enhanced plasmonic Fano-like resonances in multilayered nanoellipsoid. Applied Physics A 122:1–7Google Scholar
  6. 6.
    Khan AD and Amin M (2016) Tunable salisbury screen absorber using square lattice of plasmonic nanodisk. Plasmonics 1–6Google Scholar
  7. 7.
    Shi C, Zang X, Ji X, Chen L, Cai B, and Zhu Y (2014) Ultra-broadband terahertz perfect absorber based on multi-frequency destructive interference and grating diffraction. arXiv preprint arXiv 1409.6103Google Scholar
  8. 8.
    Khan AD, Miano G (2013) Higher order tunable Fano resonances in multilayer nanocones. Plasmonics 8:1023–1034CrossRefGoogle Scholar
  9. 9.
    Aslam MI and Ali SM (2013) A wideband metamaterial absorber for solar cell applications. in Proceedings of International Conference on Energy and Sustainability 113–116Google Scholar
  10. 10.
    Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2:517CrossRefGoogle Scholar
  11. 11.
    Ding F, Jin Y, Li B, Cheng H, Mo L, He S (2014) Ultrabroadband strong light absorption based on thin multilayered metamaterials. Laser Photonics Rev 8:946–953CrossRefGoogle Scholar
  12. 12.
    Hu D, Wang H-y, Zhu Q-f (2016) Design of six-band terahertz perfect absorber using a simple U-shaped closed-ring resonator. IEEE Photonics Journal 8:1–8Google Scholar
  13. 13.
    He X, Yan S, Lu G, Zhang Q, Wu F, Jiang J (2015) An ultra-broadband polarization-independent perfect absorber for the solar spectrum. RSC Adv 5:61955–61959CrossRefGoogle Scholar
  14. 14.
    Tao H, Bingham C, Pilon D, Fan K, Strikwerda A, Shrekenhamer D, Padilla W, Zhang X, Averitt R (2010) A dual band terahertz metamaterial absorber. J Phys D Appl Phys 43:225102CrossRefGoogle Scholar
  15. 15.
    Shen X, Cui TJ, Zhao J, Ma HF, Jiang WX, Li H (2011) Polarization-independent wide-angle triple-band metamaterial absorber. Opt Express 19:9401–9407CrossRefGoogle Scholar
  16. 16.
    Wang B-X, Zhai X, Wang G, Huang W, Wang L (2015) Design of a four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics Journal 7:1–8Google Scholar
  17. 17.
    Nielsen MG, Pors A, Albrektsen O, Bozhevolnyi SI (2012) Efficient absorption of visible radiation by gap plasmon resonators. Opt Express 20:13311–13319CrossRefGoogle Scholar
  18. 18.
    Johnson PB, Christy R-W (1972) Optical constants of the noble metals. Phys Rev B 6:4370CrossRefGoogle Scholar
  19. 19.
    Cong J, Zheng G, Yun B, Zhou Z (2015) Simultaneous enhancement of bandwidth and group index of slow light via metamaterial induced transparency with double bright resonators, Selected Topics in Quantum Electronics. IEEE Journal 21:1–6CrossRefGoogle Scholar
  20. 20.
    Li G, Chen X, Li O, Shao C, Jiang Y, Huang L, Ni B, Hu W, Lu W (2012) A novel plasmonic resonance sensor based on an infrared perfect absorber. J Phys D Appl Phys 45:205102CrossRefGoogle Scholar
  21. 21.
    Jamali AA, Witzigmann B (2014) Plasmonic perfect absorbers for biosensing applications. Plasmonics 9:1265–1270CrossRefGoogle Scholar
  22. 22.
    Mandal P (2016) Plasmonic perfect absorber for refractive index sensing and SERS. Plasmonics 11:223–229CrossRefGoogle Scholar
  23. 23.
    Mulla B and Sabah C (2016) Multiband metamaterial absorber design based on plasmonic resonances for solar energy harvesting. Plasmonics 1–9Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Habib Ullah
    • 1
  • Adnan Daud Khan
    • 2
  • Muhammad Noman
    • 3
  • Anees Ur Rehman
    • 2
  1. 1.Department of Electrical EngineeringUniversity of Engineering and TechnologyPeshawarPakistan
  2. 2.Department of Electrical EngineeringSarhad University of Science & Information TechnologyPeshawarPakistan
  3. 3.Center for Advanced Studies in EnergyUniversity of Engineering and TechnologyPeshawarPakistan

Personalised recommendations