, Volume 13, Issue 2, pp 567–574 | Cite as

Plasmonic Control of Refractive Index Without Absorption in Metallic Photonic Crystals Doped with Quantum Dots

  • Zhiping Wang
  • Benli Yu


We investigate the refractive index without absorption in metallic photonic crystals doped with quantum dots. It is found that the absorption and dispersion of probe field can be easily controlled via adjusting properly the corresponding parameters of the system. The effect of the dipole-dipole interaction has also been included in the formulation, which leads to interesting phenomena. Our scheme opens the possibility to control the refractive index without absorption in polaritonic materials doped with nanoparticles.


Refractive index Metallic photonic crystals Quantum dots Plasma energy 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 11674002 and 11205001) and the doctoral scientific research foundation of Anhui University.


  1. 1.
    Kaso A, John S (2007) Nonlinear Bloch waves in metallic photonic band-gap filaments. Phys Rev A 76:053838CrossRefGoogle Scholar
  2. 2.
    Singh MR (2009) A study of plasmonics in metallic photonic quantum wires. J Appl Phys 106:063106CrossRefGoogle Scholar
  3. 3.
    Yannopapas V, Paspalakis E, Vitanov NV (2009) Electromagnetically induced transparency and slow light in an array of metallic nanoparticles. Phys Rev B 80:035104CrossRefGoogle Scholar
  4. 4.
    Hatef A, Singh M (2010) The study of quantum interference in metallic photonic crystals doped with four-level quantum dots. Nanoscale Res Lett 5:464CrossRefGoogle Scholar
  5. 5.
    Zhu SY, Scully MO (1996) Spectral line elimination and spontaneous emission cancellation via quantum interference. Phys Rev Lett 76:388CrossRefGoogle Scholar
  6. 6.
    Zhu SY, Chen H, Huang H (1997) Quantum interference effects in spontaneous emission from an atom embedded in a photonic band gap structure. Phys Rev Lett 79:205CrossRefGoogle Scholar
  7. 7.
    Zhou P, Swain S (1997) Quantum interference in probe absorption: narrow resonances, transparency, and gain without population inversion. Phys Rev Lett 78:832CrossRefGoogle Scholar
  8. 8.
    John S, Quang T (1997) Collective switching and inversion without fluctuation of two-level atoms in confined photonic systems. Phys Rev Lett 78:1888CrossRefGoogle Scholar
  9. 9.
    Paspalakis E, Kylstra NJ, Knight PL (1999) Transparency induced via decay interference. Phys Rev Lett 82:2079CrossRefGoogle Scholar
  10. 10.
    Anton MA, Calderon OG, Carreno F (2005) Spontaneously generated coherence effects in a laser-driven four-level atomic system. Phys Rev A 72:023809CrossRefGoogle Scholar
  11. 11.
    Paspalakis E, Knight PL (1998) Phase control of spontaneous emission. Phys Rev Lett 81:293CrossRefGoogle Scholar
  12. 12.
    John S, Quang T (1994) Spontaneous emission near the edge of a photonic band gap. Phys Rev A 50:1764CrossRefGoogle Scholar
  13. 13.
    Paspalakis E, Kylstra NJ, Knight PL (1999) Transparency near a photonic band edge. Phys Rev A 60:R33CrossRefGoogle Scholar
  14. 14.
    John S, Busch K (1999) Photonic bandgap formation and tunability in certain self-organizing systems. J Lightwave Technol 17:1931CrossRefGoogle Scholar
  15. 15.
    Lodahl P, Van Driel AF, Nikolaev IS, Irman A, Overgaag K, Vanmaekelbergh D, Vos WL (2004) Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430:654CrossRefGoogle Scholar
  16. 16.
    Gerardot BD, Brunner D, Dalgarno PA, Karrai K, Badolato A, Petroff PM, Warburton RJ (2009) Dressed excitonic states and quantum interference in a three-level quantum dot ladder system. New J Phys 11:013028CrossRefGoogle Scholar
  17. 17.
    Hatef A, Singh M (2010) Plasmonic effect on quantum coherence and interference in metallic photonic crystals doped with quantum dots. Phys Rev A 81:063816CrossRefGoogle Scholar
  18. 18.
    Scully MO (1991) Enhancement of the index of refraction via quantum coherence. Phys Rev Lett 67:1855CrossRefGoogle Scholar
  19. 19.
    Fleischhauer M, Keitel CH, Scully MO, Su C, Ulrich BT, Zhu SY (1992) Resonantly enhanced refractive index without absorption via atomic coherence. Phys Rev A 46:1468CrossRefGoogle Scholar
  20. 20.
    Zibrov AS, Lukin MD, Hollberg L, Nikonov DE, Scully MO, Robinson HG, Velichansky VL (1996) Experimental demonstration of enhanced index of refraction via quantum coherence in Rb. Phys Rev Lett 76:3935CrossRefGoogle Scholar
  21. 21.
    Yavuz DD (2005) Refractive index enhancement in a far-off resonant atomic system. Phys Rev Lett 95:223601CrossRefGoogle Scholar
  22. 22.
    Proite NA, Unks BE, Green JT, Yavuz DD (2008) Refractive index enhancement with vanishing absorption in an atomic vapor. Phys Rev Lett 101:147401CrossRefGoogle Scholar
  23. 23.
    Brown ER, McMahon OB (1995) Large electromagnetic stop bands in metallodielectric photonic crystals. Appl Phys Lett 67:2138CrossRefGoogle Scholar
  24. 24.
    Scalora M, Bloemer MJ, Pethel AS, Dowling JP, Bowden CM, Manka AS (1998) Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures. J Appl Phys 83 :2377CrossRefGoogle Scholar
  25. 25.
    Velikov KP, Vos WL, Moroz A, Van Blaaderen A (2004) Reflectivity of metallodielectric photonic glasses. Phys Rev B 69:075108CrossRefGoogle Scholar
  26. 26.
    Veronis G, Dutton RW, Fan S (2005) Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range. J Appl Phys 97:1CrossRefGoogle Scholar
  27. 27.
    Haque I, Singh MR (2007) A study of the ac Stark effect in doped photonic crystals. J Phys Condens Matter 19:156229CrossRefGoogle Scholar
  28. 28.
    Singh MR (2009) Absorption studies in dipole–dipole interacting nanoparticles doped in nonlinear photonic crystals. J Mod Opt 56:758CrossRefGoogle Scholar
  29. 29.
    Rupasov VI, Singh M (1997) Two-atom problem and polariton-impurity band in dispersive media and photonic-band-gap materials. Phys Rev A 56:898CrossRefGoogle Scholar
  30. 30.
    Singh MR (2009) Photon transparency in metallic photonic crystals doped with an ensemble of nanoparticles. Phys Rev A 79:013826CrossRefGoogle Scholar
  31. 31.
    Singh MR (2007) Dipole-dipole interaction in photonic-band-gap materials doped with nanoparticles. Phys Rev A 75:043809CrossRefGoogle Scholar
  32. 32.
    Paspalakis E, Gong SQ, Knight PL (1998) Spontaneous emission-induced coherent effects in absorption and dispersion of a V-type three-level atom. Opt Commun 152:293CrossRefGoogle Scholar
  33. 33.
    Scully MO, Zubairy MS (1997) Quantum optics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  34. 34.
    Keskinen MJ, Loschialpo P, Forester D, Schelleng J (2000) Photonic band gap structure and transmissivity of frequency-dependent metallic–dielectric systems. J Appl Phys 88:5785CrossRefGoogle Scholar
  35. 35.
    Xu X, Xi Y, Han D, Liu X, Zi J, Zhu Z (2005) Effective plasma frequency in one-dimensional metallic-dielectric photonic crystals. Appl Phys Lett 86:091112CrossRefGoogle Scholar
  36. 36.
    Wang Z, Chan CT, Zhang W, Ming N, Sheng P (2001) Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency. Phys Rev B 64:113108CrossRefGoogle Scholar
  37. 37.
    Kamaev V, Liu C, Pokrovsky AL, Li CY, Efros AL, Valy Vardeny Z (2005) Optical studies of 2 D and 3 D metallo-dielectric photonic crystals. Proc SPIE Int Soc Opt Eng 5927:592712Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of EducationAnhui UniversityHefeiChina

Personalised recommendations