, Volume 13, Issue 2, pp 555–561 | Cite as

Morphology Optimization of Silver Nanoparticles Used to Improve the Light Absorption in Thin-Film Silicon Solar Cells

  • Zhiqiang Duan
  • Meicheng Li
  • Trevor Mwenya
  • Yingfeng Li
  • Dandan Song


Silver nanoparticle (NP) arrays are used as antireflection coating to enhance light trapping capability of thin-film silicon solar cells. In this paper, we theoretically investigate the differences of light absorption distribution between the silver NP (spherical and hemispherical) array layer and the crystalline silicon (CS) substrate. Compared to the naked silicon of the same thickness, the results show that only the flattened hemispherical silver NPs can really improve the light trapping ability and make the light absorption of CS body increase by 26%; the optimum ratio of lateral (NP diameter divided by the array periodicity) and longitudinal (NP height divided by diameter) are 0.86 and 0.22, respectively.


Antireflection coatings Geometric optical design Thin films Nanomaterials 



This work was supported partially by the National High-tech R&D Program of China (2015AA034601), National Natural Science Foundation of China (91333122, 61204064, 51202067, 51372082, 51402106, and 11504107), Ph.D. Programs Foundation of Ministry of Education of China (20120036120006, 20130036110012), Par-Eu Scholars Program, and the Fundamental Research Funds for the Central Universities.


  1. 1.
    Pillai S, Green MA (2010) Plasmonics for photovoltaic applications. Sol Energy Mater Sol Cells 94:1481–1486CrossRefGoogle Scholar
  2. 2.
    Spinelli P, Ferry VE, Groep JVD, Lare MV, Verschuuren MA, Schropp REI, Atwater HA, Polman A (2012) Plasmonic light trapping in thin-film si solar cells. J Opt 14(2):24002–24012CrossRefGoogle Scholar
  3. 3.
    Tanabe K (2007) Optical radiation efficiencies of metal nanoparticles for optoelectronic applications. Mater Lett 61:4573–4575CrossRefGoogle Scholar
  4. 4.
    Sekhon JS, Verma SS (2012) Rational selection of nanorod plasmons: material, size, and shape dependence mechanism for optical sensors. Plasmonics 7:453–459CrossRefGoogle Scholar
  5. 5.
    Akimov YA, Koh WS (2011) Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells. Plasmonics 6:155–161CrossRefGoogle Scholar
  6. 6.
    Tang Y, Vlahovic B (2013) Metallic nano-particles for trapping light. Nanoscale Res Lett 8(1):65CrossRefGoogle Scholar
  7. 7.
    Uhrenfeldt C, Villesen TF, Têtu A, Johansen B, Nylandsted Larsen A (2015) Broadband photocurrent enhancement and light-trapping in thin film Si solar cells with periodic Al nanoparticle arrays on the front. Opt Express 23:A525–A538CrossRefGoogle Scholar
  8. 8.
    Cheng S, Wang X (2015) Efficient light trapping structures of thin film silicon solar cells based on silver nanoparticle arrays. Plasmonics 10(6):1–8Google Scholar
  9. 9.
    Xu Y, Xuan Y (2015) Design principle for absorption enhancement with nanoparticles in thin-film silicon solar cells. J Nanopart Res 17(7):1–12CrossRefGoogle Scholar
  10. 10.
    Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113CrossRefGoogle Scholar
  11. 11.
    Starowicz Z, Kulesza-Matlak G, Lipiński M (2015) Optimization studies on enhanced absorption in thin silicon solar cell by plasmonic silver nanoparticles for the front side configuration. Plasmonics 10(6):1639–1647Google Scholar
  12. 12.
    Kasten F, Young AT (1989) Revised optical air mass tables and approximation formula. Appl Opt 28:4735–4738CrossRefGoogle Scholar
  13. 13.
    Duan Z, Li M, Mwenya T, Pengfei F, Li Y, Song D (2016) Effective light absorption and its enhancement factor for silicon nanowire-based solar cell. Appl Opt 55:117–121CrossRefGoogle Scholar
  14. 14.
    Santbergen R, Smets AHM, Zeman M (2013) Optical model for multilayer structures with coherent, partly coherent and incoherent layers. Opt Express 21:A262–A267CrossRefGoogle Scholar
  15. 15.
    Santbergen R, van Zolingen RJC (2008) The absorption factor of crystalline silicon PV cells: a numerical and experimental study. Sol Energy Mater Sol Cells 92(4):432–444CrossRefGoogle Scholar
  16. 16.
    Cai W, Shalaev V (2010) Optical metamaterials: fundamentals and applications. Springer, New York, pp p29–p30CrossRefGoogle Scholar
  17. 17.
    Palik E D (1985) Handbook of optical constants of solids, Vol. 1. Academic Press 189:p350, p547Google Scholar
  18. 18.
    Liu W, Wang X, Li Y, Geng Z, Yang F, Li J (2011) Surface plasmon enhanced GaAs thin film solar cells. Sol Energy Mater Sol Cells 95(2):693–698CrossRefGoogle Scholar
  19. 19.
    In S, Mason DR, Lee H, Jung M, Lee C, Parkl N (2015) Enhanced light trapping and power conversion efficiency in ultrathin plasmonic organic solar cells: a coupled optical-electrical multiphysics study on the effect of nanoparticle geometry. ACS Photonics 2:78–85CrossRefGoogle Scholar
  20. 20.
    Cheng S, Jie S, Wang X (2015) A Design of Thin Film Silicon Solar Cells Based on silver nanoparticle arrays. Plasmonics 10:633–641CrossRefGoogle Scholar
  21. 21.
    Akimov YA, Ostrikov K, Li EP (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4:107–113CrossRefGoogle Scholar
  22. 22.
    Alemu N, Chen F (2014) Plasmon-enhanced light absorption of thin-film solar cells using hemispherical nanoparticles. Phys Status Solidi A 211(1):213–218CrossRefGoogle Scholar
  23. 23.
    Temple TL, Mahanama GDK, Reehal HS, Bagnall DM (2009) Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Sol Energy Mater Sol Cells 93(11):1978–1985CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Zhiqiang Duan
    • 1
    • 2
  • Meicheng Li
    • 2
    • 3
  • Trevor Mwenya
    • 2
  • Yingfeng Li
    • 2
  • Dandan Song
    • 2
  1. 1.School of Mathematical and Physical ScienceNorth China Electric Power UniversityBeijingChina
  2. 2.State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable EnergyNorth China Electric Power UniversityBeijingChina
  3. 3.Chongqing Materials Research InstituteChongqingChina

Personalised recommendations