Plasmonics

, Volume 13, Issue 2, pp 537–544 | Cite as

Naked Eye Detection of Cr3+ and Co2+ Ions by Gold Nanoparticle Modified with Azomethine

  • Changiz Karami
  • Sara Yazdani Mehr
  • Esmail Deymehkar
  • Mohammad Ali Taher
Article

Abstract

This paper reports the synthesis of azomethine-modified gold nanoparticles with azomethine (azomethine-AuNPs) in aqueous media, which were characterized by FT-IR spectroscopy, ultraviolet–visible spectroscopy (UV-Vis), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). The azomethine-AuNPs were employed as colorimetric for Cr3+ and Co2+ ions at pH 6.2–7.5 and 8.1–9.1, at room temperature in aqueous solution. In the presence of Cr3+ and Co2+, the azomethine-AuNPs induce aggregation of the nanoparticles. Upon aggregation, the surface plasmon absorption band red-shifts so that the nanoparticle solution appears a blue color. The sensitivity of azomethine-AuNPs towards other metal ions, Mg2+, Mn2+, Cr6+, Na+, Ni2+, Ag+, Al3+, Ca2+, Cd2+, Cu2+, Fe2+, Fe3+, Hg2+, Cd2+, K+, Co3+, Ni2+, Pb2+, and Zn2+ are negligible. This highly selective sensor allows a direct quantitative assay of Co2+ and Cr3+ with colorimetric detection limits of 83.22 and 108 nM, respectively.

Keywords

Gold nanoparticle Sensors Nanoparticles Colorimetric sensing Co2+ and Cr3+ 

Notes

Acknowledgments

We are thankful to the Shahid Bahonar University of Kerman, Kerman, Iran, for supporting this work.

References

  1. 1.
    Li L, Cao R, Wang Z, Li J, Qi L (2009) Template synthesis of hierarchical Bi2E3 (E= S, Se, Te) core− shell microspheres and their electrochemical and photoresponsive properties. J Phys Chem Lett 113(42):18075–18081CrossRefGoogle Scholar
  2. 2.
    Guo Y, Wang Z, Qu W, Shao H, Jiang X (2011) Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosens Bioelectron 26(10):4064–4069CrossRefGoogle Scholar
  3. 3.
    Schwarz FJ, Kirchgessner M, Stangl GI (2000) Cobalt requirement of beef cattle—feed intake and growth at different levels of cobalt supply. J Anim Physiol Anim Nutr 83(3):121–131. doi: 10.1046/j.1439-0396.2000.00258.x CrossRefGoogle Scholar
  4. 4.
    Vasylkiv OY, Kubrak OI, Storey KB, Lushchak VI (2010) Cytotoxicity of chromium ions may be connected with induction of oxidative stress. Chemosphere 80(9):1044–1049CrossRefGoogle Scholar
  5. 5.
    Lushchak V, Kubrak OI, Lozinsky OV, Storey JM, Storey KB, Lushchak VI (2009) Chromium (III) induces oxidative stress in goldfish liver and kidney. Aquat Toxicol 93(1):45–52CrossRefGoogle Scholar
  6. 6.
    Barceloux D (1999) Cobalt. Clin Toxicol 37:201–216Google Scholar
  7. 7.
    Milne A, Landing W, Bizimis M, Morton P (2010) Determination of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in seawater using high resolution magnetic sector inductively coupled mass spectrometry (HR-ICP-MS). Anal Chim Acta 665(2):200–207CrossRefGoogle Scholar
  8. 8.
    Taher MA (2001) Flame atomic absorption spectrometric determination of trace amounts of manganese in alloys and biological samples after preconcentration with the lon pair of 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol and ammonium tetraphenylborate on microcrystalline naphthalene or by column method. Anal Sci 17(8):969–973CrossRefGoogle Scholar
  9. 9.
    Hutton LA, O’Neil GD, Read TL, Ayres ZJ, Newton ME, Macpherson JV (2014) Electrochemical x-ray fluorescence spectroscopy for trace heavy metal analysis: enhancing x-ray fluorescence detection capabilities by four orders of magnitude. Anal Chem 86(9):4566–4572CrossRefGoogle Scholar
  10. 10.
    He Y, Liang Y, Song H (2016) One-pot preparation of creatinine-functionalized gold nanoparticles for colorimetric detection of silver ions. Plasmonics 11(2):587–591CrossRefGoogle Scholar
  11. 11.
    Rawat KA, Kailasa SK (2014) Visual detection of arginine, histidine and lysine using quercetin-functionalized gold nanoparticles. Microchim Acta 181(15–16):1917–1929CrossRefGoogle Scholar
  12. 12.
    Chen Z, Zhang C, Zhou T, Ma H (2015) Gold nanoparticle based colorimetric probe for dopamine detection based on the interaction between dopamine and melamine. Microchim Acta 182(5–6):1003–1008CrossRefGoogle Scholar
  13. 13.
    Devasenathipathy R, Karuppiah C, Chen S-M, Mani V, Vasantha VS, Ramaraj S (2015) Highly selective determination of cysteine using a composite prepared from multiwalled carbon nanotubes and gold nanoparticles stabilized with calcium crosslinked pectin. Microchim Acta 182(3–4):727–735CrossRefGoogle Scholar
  14. 14.
    He Y, Zhang X, Yu H (2015) Gold nanoparticles-based colorimetric and visual creatinine assay. Microchim Acta 182(11–12):2037–2043CrossRefGoogle Scholar
  15. 15.
    Liu J, Zhang X, Xiao C, Yang A, Zhao H, He Y, Li X, Yuan Z (2015) Colorimetric and visual determination of dicyandiamide using gallic acid-capped gold nanoparticles. Microchim Acta 182(1–2):435–441CrossRefGoogle Scholar
  16. 16.
    Liu W, Zhang D, Zhu W, Zhang S, Wang Y, Yu S, Liu T, Zhang X, Zhang W, Wang J (2015) Colorimetric and visual determination of total nereistoxin-related insecticides by exploiting a nereistoxin-driven aggregation of gold nanoparticles. Microchim Acta 182(1–2):401–408CrossRefGoogle Scholar
  17. 17.
    Maity D, Bhatt M, Paul P (2015) Calix [4] arene functionalized gold nanoparticles for colorimetric and bare-eye detection of iodide in aqueous media and periodate aided enhancement in sensitivity. Microchim Acta 182(1–2):377–384CrossRefGoogle Scholar
  18. 18.
    Pu W, Zhao H, Wu L, Zhao X (2015) A colorimetric method for the determination of xanthine based on the aggregation of gold nanoparticles. Microchim Acta 182(1–2):395–400CrossRefGoogle Scholar
  19. 19.
    Xiao C, Liu J, Yang A, Zhao H, He Y, Li X, Yuan Z (2015) Colorimetric determination of neomycin using melamine modified gold nanoparticles. Microchim Acta 182(7–8):1501–1507CrossRefGoogle Scholar
  20. 20.
    Xu J, Li Y, Bie J, Jiang W, Guo J, Luo Y, Shen F, Sun C (2015) Colorimetric method for determination of bisphenol A based on aptamer-mediated aggregation of positively charged gold nanoparticles. Microchim Acta 1–8Google Scholar
  21. 21.
    Zhang Y, Li R, Xue Q, Li H, Liu J (2015) Colorimetric determination of copper (II) using a polyamine-functionalized gold nanoparticle probe. Microchim Acta 1–7Google Scholar
  22. 22.
    Chen Z, Hu Y, Yang Q, Wan C, Tan Y, Ma H (2015) A highly sensitive colorimetric sensor for adrenaline detection based on organic molecules-functionalized gold nanoparticles. Sensors Actuators B Chem 207:277–280CrossRefGoogle Scholar
  23. 23.
    Alizadeh A, Khodaei M, Karami C, Workentin M, Shamsipur M, Sadeghi M (2010) Rapid and selective lead (II) colorimetric sensor based on azacrown ether-functionalized gold nanoparticles. Nanotechnology 21:315503CrossRefGoogle Scholar
  24. 24.
    Haghnazari N, Alizadeh A, Karami C, Hamidi Z (2013) Simple optical determination of silver ion in aqueous solutions using benzo crown-ether modified gold nanoparticles. Microchim Acta 180(3–4):287–294CrossRefGoogle Scholar
  25. 25.
    Maity D, Gupta R, Gunupuru R, Srivastava DN, Paul P (2014) Calix [4] arene functionalized gold nanoparticles: application in colorimetric and electrochemical sensing of cobalt ion in organic and aqueous medium. Sensors Actuators B Chem 191:757–764CrossRefGoogle Scholar
  26. 26.
    Zhang X, Sun Z, Cui Z, Li H (2014) Ionic liquid functionalized gold nanoparticles: synthesis, rapid colorimetric detection of imidacloprid. Sensors Actuators B Chem 191:313–319CrossRefGoogle Scholar
  27. 27.
    Darbha GK, Singh AK, Rai US, Yu E, Yu H, Chandra Ray P (2008) Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J Am Chem Soc 130(25):8038–8043CrossRefGoogle Scholar
  28. 28.
    Wang H, Wang Y, Jin J, Yang R (2008) Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury (II) ions in aqueous solution. Anal Chem 80(23):9021–9028CrossRefGoogle Scholar
  29. 29.
    Ma B, Zeng F, Zheng F, Wu S (2011) A fluorescence turn-on sensor for iodide based on a thymine–HgII–thymine complex. Chemistry-A European Journal 17(52):14844–14850CrossRefGoogle Scholar
  30. 30.
    Annadhasan M, Kasthuri J, Rajendiran N (2015) Green synthesis of gold nanoparticles under sunlight irradiation and their colorimetric detection of Ni 2+ and Co 2+ ions. RSC Adv 5(15):11458–11468CrossRefGoogle Scholar
  31. 31.
    Chen Y-C, Lee I-L, Sung Y-M, Wu S-P (2013) Triazole functionalized gold nanoparticles for colorimetric Cr 3+ sensing. Sensors Actuators B Chem 188:354–359CrossRefGoogle Scholar
  32. 32.
    Dang Y-Q, Li H-W, Wang B, Li L, Wu Y (2009) Selective detection of trace Cr3+ in aqueous solution by using 5, 5′-dithiobis (2-nitrobenzoic acid)-modified gold nanoparticles. ACS Appl Mater Interfaces 1(7):1533–1538CrossRefGoogle Scholar
  33. 33.
    Liu R, Chen Z, Wang S, Qu C, Chen L, Wang Z (2013) Colorimetric sensing of copper (II) based on catalytic etching of gold nanoparticles. Talanta 112:37–42CrossRefGoogle Scholar
  34. 34.
    Xin J, Miao L, Chen S, Wu A (2012) Colorimetric detection of Cr 3+ using tripolyphosphate modified gold nanoparticles in aqueous solutions. Anal Methods 4(5):1259–1264CrossRefGoogle Scholar
  35. 35.
    Zhao L, Jin Y, Yan Z, Liu Y, Zhu H (2012) Novel, highly selective detection of Cr (III) in aqueous solution based on a gold nanoparticles colorimetric assay and its application for determining Cr (VI). Anal Chim Acta 731:75–81CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Changiz Karami
    • 1
  • Sara Yazdani Mehr
    • 2
  • Esmail Deymehkar
    • 1
  • Mohammad Ali Taher
    • 1
  1. 1.Department of Chemistry, Kermanshah BranchIslamic Azad UniversityKermanshahIran
  2. 2.Department of Chemistry, Faculty of SciencesShahid Bahonar University of KermanKermanIran

Personalised recommendations