Plasmonics

, Volume 13, Issue 2, pp 525–530 | Cite as

Tunable Terahertz Filters Based on Graphene Plasmonic All-Dielectric Metasurfaces

  • Li-Hua Jiang
  • Faqiang Wang
  • Ruisheng Liang
  • Zhongchao Wei
  • Hongyun Meng
  • Hongguang Dong
  • Haifeng Cen
  • Ling Wang
  • Shijie Qin
Article
  • 598 Downloads

Abstract

A tunable terahertz filter based on graphene plasmonic all-dielectric metasurfaces is proposed and investigated numerically by using the finite-difference time-domain (FDTD) method. Especially, hybrid all-dielectric metasurfaces are used to make a whole single-sheet graphene forms two different conductivity patterns with the same gate voltage. The simulated results show that resonance wavelength is shifted significantly with the change of gate voltage. Besides, the transmittance spectra are also shifted with the change of the width of SiC, and the filter shows a polarization-dependent modulation property for the length and the width of SiC being 480 and 320 nm, respectively. In addition, the filter can be applied for refractive sensing because the transmittance spectra are shifted with the change of the background refractive index. The study could provide availability for versatile tunable terahertz graphene plasmonic metasurfaces.

Keywords

Graphene plasmon polaritons Metasurfaces Filters 

Notes

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant No. 61275059 and No. 11674109).

References

  1. 1.
    Koenig S, Lopez-Diaz D, Antes J et al (2013) Wireless sub-THz communication system with high data rate. Nat Photonics 7(12):977–981CrossRefGoogle Scholar
  2. 2.
    Ferguson B, ZHANG. Materials for terahertz science and technology. Nat Mater, 2002, 1(1):26–33.Google Scholar
  3. 3.
    Landy NI, Bingham CM, Tyler T et al (2009) Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging. Phys Rev B 79(12):125104CrossRefGoogle Scholar
  4. 4.
    Markelz AG (2008) Terahertz dielectric sensitivity to biomolecular structure and function. IEEE Journal of Selected Topics in Quantum Electronics 14(1):180–190CrossRefGoogle Scholar
  5. 5.
    Withayachumnankul W, Abbott D (2009) Metamaterials in the terahertz regime. IEEE Photonics Journal 1(2):99–118CrossRefGoogle Scholar
  6. 6.
    Chen HT, Padilla WJ, Zide JM et al (2006) Active terahertz metamaterial devices. Nature 444(7119):597–600CrossRefGoogle Scholar
  7. 7.
    Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292(5514):77–79CrossRefGoogle Scholar
  8. 8.
    Tao H, Bingham CM, Strikwerda AC et al (2008) Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Phys Rev B 78(24):241103CrossRefGoogle Scholar
  9. 9.
    Singh R, Plum E, Menzel C et al (2009) Terahertz metamaterial with asymmetric transmission. Physical Review B Condensed Matter 80(15):153104CrossRefGoogle Scholar
  10. 10.
    Wu C, Arju N, Kelp G et al (2014) Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nat Commun 5:3892–3892Google Scholar
  11. 11.
    Chen X, Huang L, Mühlenbernd H et al (2012) Dual-polarity plasmonic metalens for visible light. Nat Commun 3:1198CrossRefGoogle Scholar
  12. 12.
    Ni X, Kildishev AV, Shalaev VM (2013) Metasurface holograms for visible light. Nat Commun 4:2807Google Scholar
  13. 13.
    Lin D, Fan P, Hasman E et al (2014) Dielectric gradient metasurface optical elements. Science 345(6194):298–302CrossRefGoogle Scholar
  14. 14.
    Koppens FHL, Chang DE, Abajo FJGD (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11(8):3370–3377CrossRefGoogle Scholar
  15. 15.
    Fei Z, Rodin AS, Andreev GO et al (2012) Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487(7405):82–85CrossRefGoogle Scholar
  16. 16.
    Chen J, Badioli M, Alonsogonzález P et al (2012) Optical nano-imaging of gate-tuneable graphene plasmons. Nature 487(7405):77–81CrossRefGoogle Scholar
  17. 17.
    Brar VW, Jang MS, Sherrott M et al (2013) Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett 13(6):2541–2547CrossRefGoogle Scholar
  18. 18.
    Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332(6035):1291–1294CrossRefGoogle Scholar
  19. 19.
    Ju L, Geng B, Horng J et al (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6(10):630–634CrossRefGoogle Scholar
  20. 20.
    Su X, Wei Z, Wu C et al (2016) Negative reflection from metal/graphene plasmonic gratings. Opt Lett 41(2):348–351CrossRefGoogle Scholar
  21. 21.
    Sensale-Rodriguez B, Yan R, Kelly MM et al (2012) Broadband graphene terahertz modulators enabled by intraband transitions. Nat Commun 3:780CrossRefGoogle Scholar
  22. 22.
    Smirnova DA, Gorbach AV, Iorsh IV et al (2013) Nonlinear switching with a graphene coupler. Phys Rev B 88(4):175–181CrossRefGoogle Scholar
  23. 23.
    Goldflam MD, Ni GX, Post KW et al (2015) Tuning and persistent switching of graphene plasmons on a ferroelectric substrate. Nano Lett 15(8):4859–4864CrossRefGoogle Scholar
  24. 24.
    Lu H, Zeng C, Zhang Q et al (2015) Graphene-based active slow surface plasmon polaritons. Scientific Reports 5:8443CrossRefGoogle Scholar
  25. 25.
    Lu H, Zhao J, Gu M (2016) Nanowires-assisted excitation and propagation of mid-infrared surface plasmon polaritons in graphene. J Appl Phys 120:163106CrossRefGoogle Scholar
  26. 26.
    Correas-Serrano D, Gomez-Diaz JS, Perruisseau-Carrier J et al (2014) Graphene-based plasmonic tunable low-pass filters in the terahertz band. IEEE Trans Nanotechnol 13(6):1145–1153CrossRefGoogle Scholar
  27. 27.
    Lu H, Liu X, Mao D et al (2010) Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt Express 18(17):17922–17927CrossRefGoogle Scholar
  28. 28.
    Li HJ, Wang LL, Liu JQ et al (2013) Investigation of the graphene based planar plasmonic filters. Appl Phys Lett 103(21):211104–211104-4CrossRefGoogle Scholar
  29. 29.
    Wei Z, Li X, Yin J et al (2016) Active plasmonic band-stop filters based on graphene metamaterial at THz wavelengths. Opt Express 24(13):14344–14351CrossRefGoogle Scholar
  30. 30.
    Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):064302–064302-8CrossRefGoogle Scholar
  31. 31.
    Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  32. 32.
    Larruquert JI, Pérez-Marín AP, García-Cortés S et al (2011) Self-consistent optical constants of SiC thin films. J Opt Soc Am A 28(11):2340–2345CrossRefGoogle Scholar
  33. 33.
    Yan R, Liu L, Sensalerodriguez B, et al. 2013 Near-field enhanced graphene terahertz modulator. IEEE, 1–3Google Scholar
  34. 34.
    Jadidi MM, Sushkov AB, Myers-Ward RL et al (2015) Tunable terahertz hybrid metal–graphene plasmons. Nano Lett 15(10):7099–7104CrossRefGoogle Scholar
  35. 35.
    Shi B, Cai W, Zhang X et al (2016) Tunable band-stop filters for graphene plasmons based on periodically modulated graphene. Scientific Reports 6:26796CrossRefGoogle Scholar
  36. 36.
    Guo T, Argyropoulos C (2016) Broadband polarizers based on graphene metasurfaces. Opt Lett 41(23):5592–5595CrossRefGoogle Scholar
  37. 37.
    Ding J, Arigong B, Ren H et al (2015) Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped Nanoslot Array. Plasmonics 10:351–356CrossRefGoogle Scholar
  38. 38.
    Zhao J, Cao S, Liao C et al (2016) Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber. Sensors & Actuators B Chemical 230:206–211CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Li-Hua Jiang
    • 1
  • Faqiang Wang
    • 1
  • Ruisheng Liang
    • 1
  • Zhongchao Wei
    • 1
  • Hongyun Meng
    • 1
  • Hongguang Dong
    • 1
  • Haifeng Cen
    • 1
  • Ling Wang
    • 1
  • Shijie Qin
    • 1
  1. 1.Laboratory of Nanophotonic Functional Materials and Device (SIPSE) and Laboratory of Quantum Engineering and Quantum MaterialsSouth China Normal UniversityGuangzhouChina

Personalised recommendations