Skip to main content

Low-Cost Plasmonic Carbon Spacer for Surface Plasmon-Coupled Emission Enhancements and Ethanol Detection: a Smartphone Approach

Abstract

Surface plasmon-coupled emission (SPCE) has led to significant advancements in analytical techniques on account of its unique characteristics that include highly polarized photon-sorting ability. In this study, we report the use of a low-cost activated carbon as a plasmonic spacer in the SPCE substrate for achieving 30-fold enhancement in fluorescence emission. We extend the use of this spacer in the presence of Rhodamine B Base, a lactone dye as the sensing material for smartphone-based ethanol detection on the SPCE platform. Ethanol detection from 1 to 6% concentration highlights the potential use of this technique in monitoring fermentation processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

SPCE:

Surface plasmon-coupled emission

AC:

Activated carbon

RhBB:

Rhodamine B Base

PMMA:

Poly(methyl methacrylate)

L a :

In-plane lattice constant

References

  1. Ge X, Kostov Y, Rao G (2005) Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture. Biotechnol Bioeng 89:329–334

    CAS  Article  Google Scholar 

  2. Ge X, Hanson M, Shen H, Kostov Y, Brorson KA, Frey DD, Moreira AR, Rao G (2006) Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture. J Biotechnol 12:293–306

    Article  Google Scholar 

  3. Tanaka G, Funabashi H, Mie M, Kobatake E (2006) Fabrication of an antibody microwell array with self-adhering antibody binding protein. Anal Biochem 350:298–303

    CAS  Article  Google Scholar 

  4. Guo XQ, Castellano FN, Li L, Lakowicz JR (1998) Use of a longlifetime Re(I) complex in fluorescence polarization immunoassays of high-molecular-weight analytes. Anal Chem 70:632–637

    CAS  Article  Google Scholar 

  5. Kricka LJ (2002) Stains, labels and detection strategies for nucleic acids assays. Ann Clin Biochem 39:114–129

    CAS  Article  Google Scholar 

  6. Van Orden A, Machara NP, Goodwin PM, Keller RA (1998) Single-molecule identification in flowing sample streams by fluorescence burst size and intraburst fluorescence decay rate. Anal Chem 70(7):14404–11451

    Article  Google Scholar 

  7. Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR (2004) Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Anal Biochem 324:170–182

    CAS  Article  Google Scholar 

  8. Smith D, Kostov Y, Rao G (2008) Signal enhancement of surface plasmon-coupled directional emission by a conical mirror. Appl Opt 47:5229–5234

    Article  Google Scholar 

  9. Kostov Y, Smith DS, Tolosa L, Rao G, Gryczynski I, Gryczynski Z, Malicka J, Lakowicz JR (2005) Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer. Biotechnol Prog 21:1731–1735

    CAS  Article  Google Scholar 

  10. Smith DS, Kostov Y, Rao G (2007) SPCE-based sensors: ultrafast oxygen sensing using surface plasmon-coupled emission from ruthenium probes. Sens Actuator B 127:432–440

    CAS  Article  Google Scholar 

  11. Stefani D, Vasilev K, Bocchio N, Stoyanova N, Kreiter M (2005) Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film. Phys Rev Lett 94(2):023005

    CAS  Article  Google Scholar 

  12. Aslan K, Zhang Y, Geddes CD (2009) Surface plasmon-coupled fluorescence in the visible to near-infrared spectral regions using thin nickel films: application to whole blood assays. Anal Chem 81:3801–3808

    CAS  Article  Google Scholar 

  13. Borejdo J, Gryczynski Z, Calander N, Muthu P, Gryczynski I (2006) Application of surface plasmon coupled emission to study of muscle. Biophys J 91:2626–2635

    CAS  Article  Google Scholar 

  14. Venkatesh S, Ghajesh S, Ramamurthy SS (2015) 1-Minute spacer layer engineering for tunable enhancements in surface plasmon-coupled emission. Plasmonics 10:489–494

    CAS  Article  Google Scholar 

  15. Srinivasan V, Vernekar DV, Jaiswal G, Jagadeesan D, Ramamurthy SS (2016) Earth abundant iron-rich N-doped graphene based spacer and cavity materials for surface plasmon-coupled emission enhancements. ACS Appl Mater Interfaces 8:12324–12329

    CAS  Article  Google Scholar 

  16. Venkatesh S, Badiya PK, Ramamurthy SS (2016) Purcell factor based understanding of enhancements in surface plasmon-coupled emission with DNA architectures. Phys Chem Chem Phys 18(2):681–684

    CAS  Article  Google Scholar 

  17. Srinivasan V, Ramamurthy SS (2015) Purcell factor: a tunable metric for plasmon-coupled fluorescence emission enhancements in cermet nanocavities. J Phys Chem 120(5):2908–2913

    Google Scholar 

  18. Venkatesh S, Badiya PK, Ramamurthy SS (2015) Low-dimensional carbon spacers in surface plasmon-coupled emission with femtomolar sensitivity and 1000-fold fluorescence enhancements. Chem Commun 51:7809–1711

    CAS  Article  Google Scholar 

  19. Badiya PK, Srinivasan V, Jayakumar TP, Ramamurthy SS (2016) Ag-CNT architectures for attomolar dopamine detection and 100-fold fluorescence enhancements with cellphone-based surface plasmon-coupled emission platform. ChemPhysChem 17:2791–2794

    CAS  Article  Google Scholar 

  20. Rodriguez-Reinoso F, Molina-Sabio M, Gonzalez MT (1995) The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon 33:15–23

    CAS  Article  Google Scholar 

  21. Hu Z, Srinivasan MP (1999) Preparation of high surface area activated carbons from coconut shell. Microporous and Mesoporous Mat 27:11–18

    Article  Google Scholar 

  22. Hu Z, Vansant EF (1995) Carbon molecular sieves produced from walnut shell. Carbon 33:561–567

    CAS  Article  Google Scholar 

  23. Ahmadpour A, Do DD (1997) The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon 35:1723–1732

    CAS  Article  Google Scholar 

  24. Yacob AR, Majid ZA, Dasril RS, Inderan V (2008) Comparison of various sources of high surface area carbon prepared by different types of activation. Malaysian J Anal Sci 12:264–271

    Google Scholar 

  25. Hayashi JI, Uchibayashi M, Horikawa T, Muroyama K, Gomes VG (2002) Synthesizing activated carbons from resins by chemical activation with K2CO3. Carbon 40:2747–2752

    CAS  Article  Google Scholar 

  26. Yakout SM, El-Deen GS (2011) Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arab J Chem 9:S1155–S1162

    Article  Google Scholar 

  27. Nautiyal P, Subramanian KA, Dastidar MG (2016) Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: alternate use of waste of biodiesel industry. J Environ Manag 182:187–197

    CAS  Article  Google Scholar 

  28. Zawadzki J (1989) Infrared spectroscopy in surface chemistry of carbons. Chem Phys Carbon 21:147–386

    CAS  Google Scholar 

  29. Mulpur P, Podila R, Lingam K, Vemula SK, Ramamurthy SS, Kamisetti V, Rao AM (2013) Amplification of surface plasmon coupled emission from graphene–Ag hybrid films. J Phys Chem C 117:17205–17210

    CAS  Article  Google Scholar 

  30. Nagamura T, Tanaka H, Matsumoto R (2010) High performance optical sensing of alcohol by guided wave mode geometry composed of two polymer layers. Sens Actuators B 146:253–259

    CAS  Article  Google Scholar 

  31. Buttler T, Johansson KAJ, Gorton Lo GO, Marko-Varga GA (1993) On-line fermentation process monitoring of carbohydrates and ethanol using tangential-flow filtration and column liquid chromatography. Anal Chem 65:2628–2636

    CAS  Article  Google Scholar 

  32. Azevedo AM, Prazeres DMF, Cabral JMS, Fonseca LP (2005) Ethanol biosensors based on alcohol oxidase. Biosens & Bioelectr 21:235–247

    CAS  Article  Google Scholar 

  33. Petrova S, Kostov Y, Jeffris K, Rao G (2007) Optical ratiometric sensor for alcohol measurements. Anal Lett 40:715–727

    CAS  Article  Google Scholar 

  34. Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36–50

    CAS  Article  Google Scholar 

  35. Bull DR, Harris GJ, Rashed AB (1993) A connectionist approach to fuel cell sensor array processing for gas discrimination. Sens Actuators B 15:51–161

    Article  Google Scholar 

  36. Millet P, Michas A, Durand R (1996) A solid polymer electrolyte-based ethanol gas sensor. J Appl Electrochem 26:933–937

    CAS  Article  Google Scholar 

  37. Mitsubayashi K, Matsunaga H, Nishio G, Toda S, Nakanishi Y (2005) Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking. Biosens Bioelectron 20:1573–1579

    CAS  Article  Google Scholar 

  38. Blum P, Mohr GJ, Matern K, Reichert J, Spichiger-Keller UE (2001) Optical ethanol sensor using lipophilic Reichardt’s dyes in polymer membranes. Anal Chim Acta 432:269–275

    CAS  Article  Google Scholar 

Download references

Acknowledgements

S.S.R. and P.K.B acknowledge the support from DBT-Ramalingaswamy fellowship (102/IFD/SAN/776/2015-16), DST-Fast Track, and UGC-BSR fellowship, Govt. of India. S.P.C acknowledges financial support from DST Inspire Faculty Award. Authors thank the Department of Physics, Sri Sathya Sai Institute of Higher Learning, for providing access to the X-ray diffraction and Raman spectroscopic facility purchased under financial support from DST-FIST. Guidance from Bhagawan Sri Sathya Sai Baba is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Sathish Ramamurthy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Badiya, P.K., Srinivasan, V., Naik, S.P. et al. Low-Cost Plasmonic Carbon Spacer for Surface Plasmon-Coupled Emission Enhancements and Ethanol Detection: a Smartphone Approach. Plasmonics 13, 519–524 (2018). https://doi.org/10.1007/s11468-017-0538-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0538-9

Keywords

  • Ethanol sensing
  • Surface plasmon-coupled emission
  • Activated carbon
  • Fluorescence enhancement
  • Plasmonic spacer engineering