, Volume 13, Issue 2, pp 511–517 | Cite as

Plasmonic Wavelength Demultiplexer with Mode Conversion Capabilities

  • U. Aparna
  • H. S. Mruthyunjaya
  • M. Sathish Kumar


An efficient wavelength demultiplexer with its input as a metal-insulator-metal (MIM) waveguide mode and output an out of plane free-space mode is proposed. The proposed demultiplexer design is integrated on a MIM waveguide such that power is evanescently coupled into an array of appropriately designed cavity-groove combination. The demultiplexer design permits control of phase of the dropped wavelength to achieve a desired wavefront. We demonstrate this through generation of circular and plane wavefront. By controlling the evanescently coupled power into the cavity-groove combinations, it is possible to dramatically improve the efficiency of the proposed demultiplexer. Results are simulated using FEM technique.


Surface plasmons Wavelength demultiplexer Mode conversion Plasmonic lens Power splitter 


  1. 1.
    Veronis G, Fan S (2007) Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides. Opt Express 15:1211–1221CrossRefGoogle Scholar
  2. 2.
    Hu F, Yi H, Zhou Z (2011) Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities. Opt Express 19:4848–4855CrossRefGoogle Scholar
  3. 3.
    Tao J, Huang XG, Lin X, Zhang Q, Jin X (2009) A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multipleteeth- shaped structure. Opt. Epress 17:13989–13994CrossRefGoogle Scholar
  4. 4.
    Fu Y, Zhou X (2010) Plasmonic lenses: a review. Plasmonics 5:287–310CrossRefGoogle Scholar
  5. 5.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193CrossRefGoogle Scholar
  6. 6.
    Hosseini A, Massoud Y (2007) Nanoscale surface plasmon based resonator using rectangular geometry. Appl Phys Lett 90:181102 (3 pages)CrossRefGoogle Scholar
  7. 7.
    Wang G, Lu H, Liu X, Mao D, Duan L (2011) Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime. Opt. Epress 19:3513–3518CrossRefGoogle Scholar
  8. 8.
    Tao J, Huang XG, Zhu JH (2010) A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators. Opt Epress 18:11111–11116CrossRefGoogle Scholar
  9. 9.
    Lu H, Liu X, Gong Y, Mao D, Wang G (2011) Analysis of nanoplasmonic wavelength demultiplexing based on metal-insulator-metal waveguides. J Opt Soc Am B 28:1616–1621CrossRefGoogle Scholar
  10. 10.
    Hu F, Yi H, Zhou Z (2011) Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Opt Letters 36:1500–1502CrossRefGoogle Scholar
  11. 11.
    Tanemura T, Balram KC, Ly-Gagnon D-S, Wahl P, White JS, Brongersma ML, Miller DAB (2011) Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler. Nano Lett 11:2693–2698CrossRefGoogle Scholar
  12. 12.
    Li L, Li T, Wang S, Zhu S, Zhang X (2011) Broad band focusing and demultiplexing of in-plane propagating surface plasmons. Nano Lett 11:4357–4361CrossRefGoogle Scholar
  13. 13.
    Ayad MA, Obayya SSA, Swillam MA (2014) Submicron 1xN ultra wideband MIM plasmonic power splitters. J Lightwave Technol 32:1814–1820CrossRefGoogle Scholar
  14. 14.
    Chu H-S, Bai P, Li E-P, Hoefer WRJ (2011) Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: compact size and high optical performance for nanophotonic circuits. Plasmonics 6:591–597CrossRefGoogle Scholar
  15. 15.
    Xu T, Wang C, Du C, Luo X (2008) Plasmonic beam deflector. Opt Express 16:4753–4759CrossRefGoogle Scholar
  16. 16.
    Zhao Y, Lin S-CS, Nawaz AA, Kiraly B, Hao Q, Liu Y, Huang TJ (2010) Beam bending via plasmonic lenses. Opt Express 18:23458–23465CrossRefGoogle Scholar
  17. 17.
    Hao F, Wang R, Wang J (2011) A design methodology for directional beaming control by metal slit–grooves structure. J Opt 13:015002 (4pp)CrossRefGoogle Scholar
  18. 18.
    Lee B, Kim S, Kim H, Lim YJ (2010) The use of plasmonics in light beaming and focusing. Prog Quantum Electron 34:47–87CrossRefGoogle Scholar
  19. 19.
    Sathish Kumar M, Piao X, Koo S, Yu S, Park N (2010) Out of plane mode conversion and manipulation of surface plasmon polariton waves. Opt Express 18:8800–8805CrossRefGoogle Scholar
  20. 20.
    Wang B, Wu X, Zhang Y (2013) Multiple-wavelength focusing and demultiplexing plasmonic lens based on asymmetric nanoslit arrays. Plasmonics 8:1535–1541CrossRefGoogle Scholar
  21. 21.
    Gao Y, Liu J, Guo K, Gao Y, Liu S (2014) A side-illuminated plasmonic planar lens. Opt Express 22:699–706CrossRefGoogle Scholar
  22. 22.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, BerlinGoogle Scholar
  23. 23.
    Vial A, Grimault AS, Macías D, Barchiesi D, de la Chapelle ML (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71:085416CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • U. Aparna
    • 1
  • H. S. Mruthyunjaya
    • 1
  • M. Sathish Kumar
    • 1
  1. 1.Department of Electronics and Communication Engineering, Manipal Institute of TechnologyManipal UniversityManipalIndia

Personalised recommendations