, Volume 13, Issue 2, pp 503–510 | Cite as

Characterization of Asymmetric Tapered Dipole Nanoantenna for Energy Harvesting Applications

  • Youssef M. El-Toukhy
  • Mohamed Hussein
  • Mohamed Farhat O. Hameed
  • S. S. A. Obayya


In this paper, systematic study for asymmetric tapered dipole nanoantenna is implemented using finite element frequency domain (FEFD) solver where harvesting efficiency, field confinement, surface current, and input impedance are calculated at wavelength of 500 nm. The proposed nanoantennas achieve a harvesting efficiency of 61.3% and a field enhancement factor of 37.7 over the conventional dipole nanoantenna. This enhancement is attributed to the irregularity of the surface current distribution on the asymmetric designs. Particle swarm optimization technique is used to find the optimum design geometrical parameters through an external link between the optimization algorithm and the FEFD solver. Moreover, the proposed designs offer a resonance impedance of 500 Ω to match that of fabricated rectifiers. Further study of the structure fabrication tolerance is included which shows the robustness of the proposed nanoantennas.


Tapered dipole Nanoantenna Finite element frequency domain method (FEFD) Plasmonics Solar energy harvesting Particle swarm optimization (PSO) 


  1. 1.
    Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Mullen K, Moerner WE (2009) Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photon 3(11):654–657CrossRefGoogle Scholar
  2. 2.
    Zarrabi FB, Naser-Moghadasi M, Heydari S, Maleki M, Arezomand AS (2016) Cross-slot nano-antenna with graphene coat for bio-sensing application. Opt Commun 371:34–39CrossRefGoogle Scholar
  3. 3.
    Ghanim AM, Hussein M, Hameed MFO, Yahia A, Obayya SSA (2016) Highly directive hybrid Yagi-Uda nanoantenna for radition emission enhancement. IEEE Photonics Journal 8(5):1–12CrossRefGoogle Scholar
  4. 4.
    Salah O, Nihal Fayez Fahmy A, Mohamed Farhat OH, Mohamed Hussein A (2015) Optical nano-antennas for energy harvesting. In: Luciano M, Onofrio L, Francesco P (eds) Innovative materials and systems for energy harvesting applications. IGI Global, Hershey, PA, USA, pp 26–62Google Scholar
  5. 5.
    Calderón J, Álvarez J, Martinez-Pastor J, Hill D (2015) Polarimetric plasmonic sensing with bowtie nanoantenna arrays. Plasmonics 10(3):703–711CrossRefGoogle Scholar
  6. 6.
    Ma Z, Vandenbosch GAE (2013) Optimal solar energy harvesting efficiency of nano-rectenna systems. Sol Energy 88:163–174CrossRefGoogle Scholar
  7. 7.
    Fischer H, Martin OJF (2008) Engineering the optical response of plasmonic nanoantennas. Opt Express 16(12):9144–9154CrossRefGoogle Scholar
  8. 8.
    Gadalla MN, Abdel-Rahman M, Shamim A (2014) Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification. Scientific Reports 4:4270CrossRefGoogle Scholar
  9. 9.
    Krishnan S (2004) Design, fabrication and characterization of thin-film MIM diodes for rectenna array. University of South Florida, Florida, USAGoogle Scholar
  10. 10.
    Feichtner T, Selig O, Kiunke M, Hecht B (2012) Evolutionary optimization of optical antennas. Phys Rev Lett 109(12):127701CrossRefGoogle Scholar
  11. 11.
    Chen J, Zhang Z (2014) Bowtie nanoantennas with symmetry breaking. NANOP 9(1):093798–093798CrossRefGoogle Scholar
  12. 12.
    Jin N, Rahmat-Samii Y (2005) Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs. IEEE Trans Antennas Propag 53(11):3459–3468CrossRefGoogle Scholar
  13. 13.
    El-Toukhy YM, Heikal AM, Hameed MFO, Abd-Elrazzak MM, Obayya SSA Optimization of nanoantenna for solar energy harvesting based on particle swarm technique. In: 2016 IEEE/ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES), 13–18 March 2016 2016. pp 1–2.Google Scholar
  14. 14.
    Kennedy J, Eberhart R Particle swarm optimization. In: Neural Networks, 1995. Proceedings, IEEE International Conference on, Nov/Dec 1995 1995. pp 1942–1948 vol. 1944.Google Scholar
  15. 15.
    El-Toukhy YM, Hussein M, Hameed MFO, Heikal AM, Abd-Elrazzak MM, Obayya SSA (2016) Optimized tapered dipole nanoantenna as efficient energy harvester. Opt Express 24(14):A1107–A1122CrossRefGoogle Scholar
  16. 16.
    Hu W, Sarveswaran K, Lieberman M, Bernstein GH (2004) Sub-10 nm electron beam lithography using cold development of poly(methylmethacrylate). J Vac Sci Technol B 22(4):1711–1716CrossRefGoogle Scholar
  17. 17.
    Alkemade PFA, van Veldhoven E (2012) Deposition, milling, and etching with a focused helium ion beam. In: Stepanova M, Dew S (eds) Nanofabrication: techniques and principles. Springer Vienna, Vienna, pp 275–300CrossRefGoogle Scholar
  18. 18.
    Briones E, Alda J, González FJ (2013) Conversion efficiency of broad-band rectennas for solar energy harvesting applications. Opt Express 21(S3):A412–A418CrossRefGoogle Scholar
  19. 19.
    Hussein M, Fahmy Areed NF, Hameed MFO, Obayya SS (2014) Design of flower-shaped dipole nano-antenna for energy harvesting. Optoelectronics, IET 8(4):167–173CrossRefGoogle Scholar
  20. 20.
    Comsol Multiphysics software.Google Scholar
  21. 21.
    Johnson PB, Christy RW (1972) Optical constants of noble metals. Phys Rev B 6:4370CrossRefGoogle Scholar
  22. 22.
    Alù A, Nader E (2008) Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. Phys Rev Lett 101(4):4CrossRefGoogle Scholar
  23. 23.
    Zhang Z, Weber-Bargioni A, Wu SW, Dhuey S, Cabrini S, Schuck PJ (2009) Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter. Nano Lett 9(12):4505–4509CrossRefGoogle Scholar
  24. 24.
    Campbell SD, Ziolkowski RW (2015) Near-field directive beams from passive and active asymmetric optical nanoantennas. IEEE Journal of Selected Topics in Quantum Electronics 21(4):312–323CrossRefGoogle Scholar
  25. 25.
    Krasnok AE, Simovski CR, Belov PA, Kivshar YS (2014) Superdirective dielectric nanoantennas. Nanoscale 6(13):7354–7361CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Youssef M. El-Toukhy
    • 1
    • 2
  • Mohamed Hussein
    • 1
    • 3
  • Mohamed Farhat O. Hameed
    • 1
    • 2
  • S. S. A. Obayya
    • 1
    • 2
  1. 1.Centre for Photonics and Smart Materials, Zewail City of Science and Technology6th of October CityEgypt
  2. 2.Faculty of EngineeringMansoura UniversityMansouraEgypt
  3. 3.Department of Physics, Faculty of ScienceAin Shams UniversityCairoEgypt

Personalised recommendations