Skip to main content

Gold Sputtered U-Bent Plastic Optical Fiber Probes as SPR- and LSPR-Based Compact Plasmonic Sensors


This study describes fabrication of highly sensitive surface plasmon resonance (SPR) as well as localized SPR (LSPR) dominant fiber optic plasmonic probes by controlled sputtering of gold thin films on the fiber core surface. Compact U-bent probes of 750 μm plastic optical fibers (made of poly(methylmethacrylate) (PMMA)) were used for efficient evanescent wave excitation of plasmonic substrates to achieve high sensitivity. U-bent probes with 2.25-mm bend diameter were sputter coated for deposition times of 30, 60, 90, and 120 s to obtain gold thin films with nanovoids on the U-bent region. As deposition time increased, a significant transition from LSPR to SPR characteristics was observed in the overall UV-visible spectral characteristics with a clear shift in the plasmon peak from 520 to 650 nm. Probes sputtered for 30 and 120 s show excellent LSPR- and SPR-based characteristics with a sensitivity of 15.5 ∆Abs/RIU and 1040 nm/RIU, respectively (for refractive index variation from 1.333 to 1.361 RIU). The high sensitivity of the probes in addition to other advantages, including ease of fabrication, cost-effectiveness, and suitability for in situ monitoring, demonstrates their potential for bio/chemical sensing applications.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Mitsushio M, Miyashita K, Higo M (2006) Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al. Sensors Actuators A Phys 125:296–303. doi:10.1016/j.sna.2005.08.019

    CAS  Article  Google Scholar 

  2. 2.

    Kundu T, Sai VVR, Dutta R et al (2010) Development of evanescent wave absorbance-based fibre-optic biosensor. Pramana - J Phys 75:1099–1113

    CAS  Article  Google Scholar 

  3. 3.

    Sai VVR, Kundu T, Mukherji S (2009) Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor. Biosens Bioelectron 24:2804–2809. doi:10.1016/j.bios.2009.02.007

    CAS  Article  Google Scholar 

  4. 4.

    Caucheteur C, Guo T, Albert J (2015) Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal Bioanal Chem 407:3883–3897. doi:10.1007/s00216-014-8411-6

    CAS  Article  Google Scholar 

  5. 5.

    Cennamo N, D’Agostino G, Pesavento M, Zeni L (2014) High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l-nicotine. Sensors Actuators B Chem 191:529–536. doi:10.1016/j.snb.2013.10.067

    CAS  Article  Google Scholar 

  6. 6.

    Grassini S, Ishtaiwi M, Parvis M, Vallan A (2015) Design and deployment of low-cost plastic optical fiber sensors for gas monitoring. Sensors (Basel) 15:485–498. doi:10.3390/s150100485

    Article  Google Scholar 

  7. 7.

    Zeni L, Auria SD, Pesavento M et al (2015) Sensing platforms exploiting surface plasmon resonance in polymeric optical fibers for chemical and biochemical applications. Adv Photonics:6–8

  8. 8.

    Verma RK, Sharma AK, Gupta BD (2008) Surface plasmon resonance based tapered fiber optic sensor with different taper profiles. Opt Commun 281:1486–1491. doi:10.1016/j.optcom.2007.11.007

    CAS  Article  Google Scholar 

  9. 9.

    Sla R, Homola J, Brynda E (2002) A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B. Biosens Bioelectron 17:591–595

    Article  Google Scholar 

  10. 10.

    Lin H, Tsai W, Tsao Y, Sheu B (2007) Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light. Appl Opt 46:800–806

    Article  Google Scholar 

  11. 11.

    Lye PG, Boerkamp M, Ernest A, Lamb DW (2005) Investigating the sensitivity of PMMA optical fibres for use as an evanescent field absorption sensor in aqueous solutions. J Phys Conf Ser 15:262–269. doi:10.1088/1742-6596/15/1/044

    CAS  Article  Google Scholar 

  12. 12.

    Cheng S, Chau L (2003) Colloidal gold-modified optical fiber for chemical. Anal Chem 75:16–21

    CAS  Article  Google Scholar 

  13. 13.

    Cao J, Sun T, Grattan KTV (2014) Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sensors Actuators B Chem 195:332–351. doi:10.1016/j.snb.2014.01.056

    CAS  Article  Google Scholar 

  14. 14.

    Pesavento M, Cennamo N, Donà A, et al. (2014) A new approach for selective optical fiber sensors based on localized surface plasmon resonance of gold nanostars in molecularly imprinted polymer. In: Recent Adv. Biomed. Chem. Eng. Mater. Sci. Venice, Italy, March 15‐17, 2014. pp 71–75

  15. 15.

    He Y, Fu J, Zhao Y (2014) Oblique angle deposition and its applications in plasmonics. Front Phys 9(1):47–59. doi:10.1007/s11467-013-0357-1

  16. 16.

    Siegel J, Kvítek O, Kolská Z, Slepička P, Švorčík V (2012) Gold nanostructures prepared on solid surface. Metall - Adv Mater Process:44–70. doi:10.5772/51617

  17. 17.

    Leosson K, Ingason AS, Agnarsson B et al (2013) Ultra-thin gold films on transparent polymers. Nanophotonics 2:3–11. doi:10.1515/nanoph-2012-0030

    CAS  Article  Google Scholar 

  18. 18.

    Gowri A, Sai VVRVR (2016) Development of LSPR based U-bent plastic optical fiber sensors. Sensors Actuators B Chem 230:536–543. doi:10.1016/j.snb.2016.02.074

    CAS  Article  Google Scholar 

  19. 19.

    Vasanthakumari P, Khosravi Z, Sai VVR, Klages C-P (2016) PMMA surface functionalization using atmospheric pressure plasma for development of plasmonically active polymer optical fiber probes. Plasma Chem Plasma Process 36:1067–1083. doi:10.1007/s11090-016-9717-2

    CAS  Article  Google Scholar 

  20. 20.

    Cennamo N, D’Agostino G, Galatus R et al (2013) Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene. Sensors Actuators B Chem 188:221–226. doi:10.1016/j.snb.2013.07.005

    CAS  Article  Google Scholar 

  21. 21.

    Freund LB, Suresh S (2004) Modes of film growth by vapor deposition. In: Thin film materials: stress, defect formation and surface evolution Cambridge University Press, New York. pp 15–29

  22. 22.

    Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York. doi:10.1002/9783527618156.ch1

    Google Scholar 

  23. 23.

    Siegel J, Lyutakov O, Rybka V et al (2011) Properties of gold nanostructures sputtered on glass. Nanoscale Res Lett 6:96. doi:10.1186/1556-276X-6-96

    Article  Google Scholar 

  24. 24.

    Egitto FD, Matienzo LJ (1994) Plasma modification of polymer surfaces for adhesion improvement. IBM J Res Dev 38:423–439. doi:10.1147/rd.384.0423

    CAS  Article  Google Scholar 

  25. 25.

    Satyam PV, Kamila J, Mohapatra S et al (2003) Crater formation in gold nanoislands due to MeV self-ion irradiation. J Appl Phys 93:6399. doi:10.1063/1.1569026

    CAS  Article  Google Scholar 

  26. 26.

    Papal RM (1999) Cratering in PMMA induced by gold ions: dependence on the projectile velocity. Nucl Inst Methods Phys Res B 148:126–131

    Article  Google Scholar 

  27. 27.

    Lippert T, Dickinson JT (2003) Chemical and spectroscopic aspects of polymer ablation: special features and novel directions. Chem Rev 103:453–485. doi:10.1021/cr010460q

    CAS  Article  Google Scholar 

  28. 28.

    Ben-Yakar A, Harkin A, Ashmore J et al (2007) Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses. J Phys D Appl Phys 40:1447–1459. doi:10.1088/0022-3727/40/5/021

    CAS  Article  Google Scholar 

  29. 29.

    Yip J, Chan K, Moon K, Shui K (2006) Formation of periodic structures by surface treatments of polyamide fiber part II. Low temperature plasma treatment 253:2493–2497. doi:10.1016/j.apsusc.2006.05.004

    CAS  Google Scholar 

  30. 30.

    Brito PCA, Souza TXR, Gomes RF et al (2011) Au/Ag nanostructures on PMMA surface. Sci Plena 7:2–6

    Google Scholar 

  31. 31.

    Cole RM, Baumberg JJ, Abajo FJG De, et al. (2007) Understanding plasmons in nanoscale voids. Nano letters 7(7):2094–2100

  32. 32.

    Iga M, Seki A, Watanabe K (2005) Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor. Sensors Actuators B Chem 106:363–368. doi:10.1016/j.snb.2004.08.017

    CAS  Article  Google Scholar 

  33. 33.

    Cennamo N, Zeni L (2014) Bio and chemical sensors based on surface plasmon resonance in a plastic optical fiber. In: Opt. Sensors - New Dev. Pract. Appl. Intech. Rijeka, Intech. pp 119–140

  34. 34.

    Jun S, Leong C, Gyu H et al (2013) Optical fiber sensor for refractive index measurement based on localized surface Plasmon resonance. Conf Lasers Electro-Optics Pacific Rim WPF-20:2–3

    Google Scholar 

  35. 35.

    Tu H, Sun T, Grattan KT (2013) SPR-based optical fiber sensors using gold–silver alloy particles as the active sensing material. IEEE Sensors J 13:2192–2199

    CAS  Article  Google Scholar 

  36. 36.

    Cao J, Tu MH, Sun T, Grattan KTV (2013) Wavelength-based localized surface plasmon resonance optical fiber biosensor. Sensors Actuators B Chem 181:611–619. doi:10.1016/j.snb.2013.02.052

    CAS  Article  Google Scholar 

  37. 37.

    Hlubina P, Ciprian D (2014) Reflection-based fibre-optic refractive index sensor using surface plasmon resonance. J Eur Opt Soc 14033:14033

    Article  Google Scholar 

  38. 38.

    Wieduwilt T, Kirsch K, Dellith J (2013) Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance. Plasmonics 8:545–554. doi:10.1007/s11468-012-9432-7

    CAS  Article  Google Scholar 

  39. 39.

    Cao J, Galbraith EK, Sun T, Grattan KT V (2012) Cross-comparison of surface plasmon with different coating structures 12:2355–2361.

  40. 40.

    Schulz U, Kaiser N (2006) Vacuum coating of plastic optics. Prog Surf Sci 81:387–401. doi:10.1016/j.progsurf.2006.07.001

    CAS  Article  Google Scholar 

  41. 41.

    Christopher CGC, Vasanthakumari P, Annasamy G, et al. (2016) SERS based sandwich immunosensing with plasmonically active plastic optical fiber sensor probes. In: Adv. Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF). Optical Society of America, p SeW3E.7

Download references


We thank Mitsubishi Rayon Co., Ltd., Japan, for providing POF samples. We acknowledge the SEM facility in the Department of Chemical Engineering, IIT Madras for EDX spectra; SEM facility in Department of Mechanical Engineering, York University, Toronto, for SEM images; and INUP, IIT Bombay, for profilometer measurements.

Author information



Corresponding author

Correspondence to V. V. R. Sai.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Electronic Supplementary Material


(PDF 0.98 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Christopher, C., Subrahmanyam, A. & Sai, V.V.R. Gold Sputtered U-Bent Plastic Optical Fiber Probes as SPR- and LSPR-Based Compact Plasmonic Sensors. Plasmonics 13, 493–502 (2018).

Download citation


  • U-bent fiber optic sensors
  • Gold sputtering
  • Plasmonic nanostructures
  • Plastic optical fiber
  • Refractive index sensing