Advertisement

Plasmonics

, Volume 13, Issue 2, pp 493–502 | Cite as

Gold Sputtered U-Bent Plastic Optical Fiber Probes as SPR- and LSPR-Based Compact Plasmonic Sensors

  • Christina Christopher
  • A. Subrahmanyam
  • V. V. R. Sai
Article

Abstract

This study describes fabrication of highly sensitive surface plasmon resonance (SPR) as well as localized SPR (LSPR) dominant fiber optic plasmonic probes by controlled sputtering of gold thin films on the fiber core surface. Compact U-bent probes of 750 μm plastic optical fibers (made of poly(methylmethacrylate) (PMMA)) were used for efficient evanescent wave excitation of plasmonic substrates to achieve high sensitivity. U-bent probes with 2.25-mm bend diameter were sputter coated for deposition times of 30, 60, 90, and 120 s to obtain gold thin films with nanovoids on the U-bent region. As deposition time increased, a significant transition from LSPR to SPR characteristics was observed in the overall UV-visible spectral characteristics with a clear shift in the plasmon peak from 520 to 650 nm. Probes sputtered for 30 and 120 s show excellent LSPR- and SPR-based characteristics with a sensitivity of 15.5 ∆Abs/RIU and 1040 nm/RIU, respectively (for refractive index variation from 1.333 to 1.361 RIU). The high sensitivity of the probes in addition to other advantages, including ease of fabrication, cost-effectiveness, and suitability for in situ monitoring, demonstrates their potential for bio/chemical sensing applications.

Graphical abstract

Keywords

U-bent fiber optic sensors Gold sputtering Plasmonic nanostructures Plastic optical fiber Refractive index sensing 

Notes

Acknowledgements

We thank Mitsubishi Rayon Co., Ltd., Japan, for providing POF samples. We acknowledge the SEM facility in the Department of Chemical Engineering, IIT Madras for EDX spectra; SEM facility in Department of Mechanical Engineering, York University, Toronto, for SEM images; and INUP, IIT Bombay, for profilometer measurements.

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.

Supplementary material

11468_2017_535_MOESM1_ESM.pdf (1011 kb)
ESM 1 (PDF 0.98 mb)

References

  1. 1.
    Mitsushio M, Miyashita K, Higo M (2006) Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al. Sensors Actuators A Phys 125:296–303. doi: 10.1016/j.sna.2005.08.019 CrossRefGoogle Scholar
  2. 2.
    Kundu T, Sai VVR, Dutta R et al (2010) Development of evanescent wave absorbance-based fibre-optic biosensor. Pramana - J Phys 75:1099–1113CrossRefGoogle Scholar
  3. 3.
    Sai VVR, Kundu T, Mukherji S (2009) Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor. Biosens Bioelectron 24:2804–2809. doi: 10.1016/j.bios.2009.02.007 CrossRefGoogle Scholar
  4. 4.
    Caucheteur C, Guo T, Albert J (2015) Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal Bioanal Chem 407:3883–3897. doi: 10.1007/s00216-014-8411-6 CrossRefGoogle Scholar
  5. 5.
    Cennamo N, D’Agostino G, Pesavento M, Zeni L (2014) High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l-nicotine. Sensors Actuators B Chem 191:529–536. doi: 10.1016/j.snb.2013.10.067 CrossRefGoogle Scholar
  6. 6.
    Grassini S, Ishtaiwi M, Parvis M, Vallan A (2015) Design and deployment of low-cost plastic optical fiber sensors for gas monitoring. Sensors (Basel) 15:485–498. doi: 10.3390/s150100485 CrossRefGoogle Scholar
  7. 7.
    Zeni L, Auria SD, Pesavento M et al (2015) Sensing platforms exploiting surface plasmon resonance in polymeric optical fibers for chemical and biochemical applications. Adv Photonics:6–8Google Scholar
  8. 8.
    Verma RK, Sharma AK, Gupta BD (2008) Surface plasmon resonance based tapered fiber optic sensor with different taper profiles. Opt Commun 281:1486–1491. doi: 10.1016/j.optcom.2007.11.007 CrossRefGoogle Scholar
  9. 9.
    Sla R, Homola J, Brynda E (2002) A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B. Biosens Bioelectron 17:591–595CrossRefGoogle Scholar
  10. 10.
    Lin H, Tsai W, Tsao Y, Sheu B (2007) Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light. Appl Opt 46:800–806CrossRefGoogle Scholar
  11. 11.
    Lye PG, Boerkamp M, Ernest A, Lamb DW (2005) Investigating the sensitivity of PMMA optical fibres for use as an evanescent field absorption sensor in aqueous solutions. J Phys Conf Ser 15:262–269. doi: 10.1088/1742-6596/15/1/044 CrossRefGoogle Scholar
  12. 12.
    Cheng S, Chau L (2003) Colloidal gold-modified optical fiber for chemical. Anal Chem 75:16–21CrossRefGoogle Scholar
  13. 13.
    Cao J, Sun T, Grattan KTV (2014) Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sensors Actuators B Chem 195:332–351. doi: 10.1016/j.snb.2014.01.056 CrossRefGoogle Scholar
  14. 14.
    Pesavento M, Cennamo N, Donà A, et al. (2014) A new approach for selective optical fiber sensors based on localized surface plasmon resonance of gold nanostars in molecularly imprinted polymer. In: Recent Adv. Biomed. Chem. Eng. Mater. Sci. Venice, Italy, March 15‐17, 2014. pp 71–75Google Scholar
  15. 15.
    He Y, Fu J, Zhao Y (2014) Oblique angle deposition and its applications in plasmonics. Front Phys 9(1):47–59. doi: 10.1007/s11467-013-0357-1
  16. 16.
    Siegel J, Kvítek O, Kolská Z, Slepička P, Švorčík V (2012) Gold nanostructures prepared on solid surface. Metall - Adv Mater Process:44–70. doi: 10.5772/51617
  17. 17.
    Leosson K, Ingason AS, Agnarsson B et al (2013) Ultra-thin gold films on transparent polymers. Nanophotonics 2:3–11. doi: 10.1515/nanoph-2012-0030 CrossRefGoogle Scholar
  18. 18.
    Gowri A, Sai VVRVR (2016) Development of LSPR based U-bent plastic optical fiber sensors. Sensors Actuators B Chem 230:536–543. doi: 10.1016/j.snb.2016.02.074 CrossRefGoogle Scholar
  19. 19.
    Vasanthakumari P, Khosravi Z, Sai VVR, Klages C-P (2016) PMMA surface functionalization using atmospheric pressure plasma for development of plasmonically active polymer optical fiber probes. Plasma Chem Plasma Process 36:1067–1083. doi: 10.1007/s11090-016-9717-2 CrossRefGoogle Scholar
  20. 20.
    Cennamo N, D’Agostino G, Galatus R et al (2013) Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene. Sensors Actuators B Chem 188:221–226. doi: 10.1016/j.snb.2013.07.005 CrossRefGoogle Scholar
  21. 21.
    Freund LB, Suresh S (2004) Modes of film growth by vapor deposition. In: Thin film materials: stress, defect formation and surface evolution Cambridge University Press, New York. pp 15–29Google Scholar
  22. 22.
    Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York. doi: 10.1002/9783527618156.ch1 Google Scholar
  23. 23.
    Siegel J, Lyutakov O, Rybka V et al (2011) Properties of gold nanostructures sputtered on glass. Nanoscale Res Lett 6:96. doi: 10.1186/1556-276X-6-96 CrossRefGoogle Scholar
  24. 24.
    Egitto FD, Matienzo LJ (1994) Plasma modification of polymer surfaces for adhesion improvement. IBM J Res Dev 38:423–439. doi: 10.1147/rd.384.0423 CrossRefGoogle Scholar
  25. 25.
    Satyam PV, Kamila J, Mohapatra S et al (2003) Crater formation in gold nanoislands due to MeV self-ion irradiation. J Appl Phys 93:6399. doi: 10.1063/1.1569026 CrossRefGoogle Scholar
  26. 26.
    Papal RM (1999) Cratering in PMMA induced by gold ions: dependence on the projectile velocity. Nucl Inst Methods Phys Res B 148:126–131CrossRefGoogle Scholar
  27. 27.
    Lippert T, Dickinson JT (2003) Chemical and spectroscopic aspects of polymer ablation: special features and novel directions. Chem Rev 103:453–485. doi: 10.1021/cr010460q CrossRefGoogle Scholar
  28. 28.
    Ben-Yakar A, Harkin A, Ashmore J et al (2007) Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses. J Phys D Appl Phys 40:1447–1459. doi: 10.1088/0022-3727/40/5/021 CrossRefGoogle Scholar
  29. 29.
    Yip J, Chan K, Moon K, Shui K (2006) Formation of periodic structures by surface treatments of polyamide fiber part II. Low temperature plasma treatment 253:2493–2497. doi: 10.1016/j.apsusc.2006.05.004 Google Scholar
  30. 30.
    Brito PCA, Souza TXR, Gomes RF et al (2011) Au/Ag nanostructures on PMMA surface. Sci Plena 7:2–6Google Scholar
  31. 31.
    Cole RM, Baumberg JJ, Abajo FJG De, et al. (2007) Understanding plasmons in nanoscale voids. Nano letters 7(7):2094–2100Google Scholar
  32. 32.
    Iga M, Seki A, Watanabe K (2005) Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor. Sensors Actuators B Chem 106:363–368. doi: 10.1016/j.snb.2004.08.017 CrossRefGoogle Scholar
  33. 33.
    Cennamo N, Zeni L (2014) Bio and chemical sensors based on surface plasmon resonance in a plastic optical fiber. In: Opt. Sensors - New Dev. Pract. Appl. Intech. Rijeka, Intech. pp 119–140Google Scholar
  34. 34.
    Jun S, Leong C, Gyu H et al (2013) Optical fiber sensor for refractive index measurement based on localized surface Plasmon resonance. Conf Lasers Electro-Optics Pacific Rim WPF-20:2–3Google Scholar
  35. 35.
    Tu H, Sun T, Grattan KT (2013) SPR-based optical fiber sensors using gold–silver alloy particles as the active sensing material. IEEE Sensors J 13:2192–2199CrossRefGoogle Scholar
  36. 36.
    Cao J, Tu MH, Sun T, Grattan KTV (2013) Wavelength-based localized surface plasmon resonance optical fiber biosensor. Sensors Actuators B Chem 181:611–619. doi: 10.1016/j.snb.2013.02.052 CrossRefGoogle Scholar
  37. 37.
    Hlubina P, Ciprian D (2014) Reflection-based fibre-optic refractive index sensor using surface plasmon resonance. J Eur Opt Soc 14033:14033CrossRefGoogle Scholar
  38. 38.
    Wieduwilt T, Kirsch K, Dellith J (2013) Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance. Plasmonics 8:545–554. doi: 10.1007/s11468-012-9432-7 CrossRefGoogle Scholar
  39. 39.
    Cao J, Galbraith EK, Sun T, Grattan KT V (2012) Cross-comparison of surface plasmon with different coating structures 12:2355–2361.Google Scholar
  40. 40.
    Schulz U, Kaiser N (2006) Vacuum coating of plastic optics. Prog Surf Sci 81:387–401. doi: 10.1016/j.progsurf.2006.07.001 CrossRefGoogle Scholar
  41. 41.
    Christopher CGC, Vasanthakumari P, Annasamy G, et al. (2016) SERS based sandwich immunosensing with plasmonically active plastic optical fiber sensor probes. In: Adv. Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF). Optical Society of America, p SeW3E.7Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Christina Christopher
    • 1
  • A. Subrahmanyam
    • 2
  • V. V. R. Sai
    • 1
  1. 1.Biomedical Engineering Laboratory, Department of Applied MechanicsIndian Institute of Technology Madras ChennaiIndia
  2. 2.Department of PhysicsIndian Institute of Technology Madras ChennaiIndia

Personalised recommendations