Plasmonics

, Volume 13, Issue 2, pp 483–491 | Cite as

Graphene/Au-Enhanced Plastic Clad Silica Fiber Optic Surface Plasmon Resonance Sensor

Article
  • 400 Downloads

Abstract

Owing to its large surface-to-volume ratio and good biocompatibility, graphene has been identified as a highly promising candidate as the sensing layer for fiber optic sensors. In this paper, a graphene/Au-enhanced plastic clad silica (PCS) fiber optic surface plasmon resonance (SPR) sensor is presented. A sheet of graphene is employed as a sensing layer coated around the Au film on the PCS fiber surface. The PCS fiber is chosen to overcome the shortcomings of the structured microfibers and construct a more stable and reliable device. It is demonstrated that the introduction of graphene can enhance the intensity of the confined electric field surrounding the sensing layer, which results in a stronger light-matter interaction and thereby the improved sensitivity. The sensitivity of graphene-based fiber optic SPR sensor exhibits more than two times larger than that of the conventional gold film SPR fiber optic sensor. Furthermore, the dynamic response analyses reveal that the graphene/Au fiber optic SPR sensor exhibits a fast response (5 s response time) and excellent reusability (3.5% fluctuation) to the protein biomolecules. Such a graphene/Au fiber optic SPR sensor with high sensitivity and fast response shows a great promise for the future biochemical application.

Keywords

Fiber optic sensor Surface plasmon resonance Graphene Plastic clad silica fiber 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61405021, 61675037), National High Technology Research and Development Program of China (Grant No. 2015AA034801), Natural Science Foundation of Chongqing, China (Grant No. cstc2014jcyjA40045), and Visiting Scholar Foundation of Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education.

References

  1. 1.
    Singh P (2016) SPR biosensors: historical perspectives and current challenges. Sensor Actuat B- Chem 229:110–130. doi: 10.1016/j.snb.2016.01.118 CrossRefGoogle Scholar
  2. 2.
    Zhang D, Lu Y, Jiang J, Zhang Q, Yao Y, Wang P, Chen B, Cheng Q, Liu GL, Liu Q (2015) Nanoplasmonic biosensor: coupling electrochemistry to localized surface plasmon resonance spectroscopy on nanocup arrays. Biosens Bioelectron 67:237–242. doi: 10.1016/j.bios.2014.08.022 CrossRefGoogle Scholar
  3. 3.
    Mohseni S, Moghadam TT, Dabirmanesh B, Jabbari S, Khajeh K (2016) Development of a label-free SPR sensor for detection of matrixmetalloproteinase-9 by antibody immobilization on carboxymethyldextran chip. Biosens Bioelectron 81:510–516. doi: 10.1016/j.bios.2016.03.038 CrossRefGoogle Scholar
  4. 4.
    Barrios CA, Canalejas-Tejero V, Herranz S, Urraca J, Moreno-Bondi MC, Avella-Oliver M, Maquieira A, Puchades R (2015) Aluminum nanoholes for optical biosensing. Biosensors 5(3):417–431. doi: 10.3390/bios5030417 CrossRefGoogle Scholar
  5. 5.
    Liu Q, Tu X, Kim KW, Kee JS, Shin Y, Han K, Yoon Y-J, Lo G-Q, Park MK (2013) Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide. Sensor Actuat B- Chem 188:681–688. doi: 10.1016/j.snb.2013.07.053 CrossRefGoogle Scholar
  6. 6.
    Cai D, Lu Y, Lin K, Wang P, Ming H (2008) Improving the sensitivity of SPR sensors based on gratings by double-dips method (DDM). Opt Express 16(19):14597–14602. doi: 10.1364/OE.16.014597 CrossRefGoogle Scholar
  7. 7.
    Tokel O, Yildiz UH, Inci F, Durmus NG, Ekiz OO, Turker B, Cetin C, Rao S, Sridhar K, Natarajan N, Shafiee H, Dana A, Demirci U (2015) Portable microfluidic integrated plasmonic platform for pathogen detection. Sci Rep 5:9152. doi: 10.1038/srep09152 CrossRefGoogle Scholar
  8. 8.
    Yin LL, Wang SP, Shan XN, Zhang ST, Tao NJ (2015) Quantification of protein interaction kinetics in a micro droplet. Rev Sci Instrum 86(11):114101. doi: 10.1063/1.4934802 CrossRefGoogle Scholar
  9. 9.
    Zhou B, Xiao X, Liu T, Gao Y, Huang Y, Wen W (2016) Real-time concentration monitoring in microfluidic system via plasmonic nanocrescent arrays. Biosens Bioelectron 77:385–392. doi: 10.1016/j.bios.2015.09.054 CrossRefGoogle Scholar
  10. 10.
    Liang J, Yao C, Li X, Wu Z, Huang C, Fu Q, Lan C, Cao D, Tang Y (2015) Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen. Biosens Bioelectron 69:128–134. doi: 10.1016/j.bios.2015.02.026 CrossRefGoogle Scholar
  11. 11.
    Lin K, Lu Y, Chen J, Zheng R, Wang P, Ming H (2008) Surface plasmon resonance hydrogen sensorbased on metallic grating with high sensitivity. Opt Express 16(23):18599–18604. doi: 10.1364/OE.16.018599 CrossRefGoogle Scholar
  12. 12.
    Yu H, Xiong L, Chen Z, Li Q, Yi X, Ding Y, Wang F, Lv H, Ding Y (2014) Ultracompact and high sensitive refractive index sensor based on Mach–Zehnder interferometer. Opt Lasers Eng 56:50–53. doi: 10.1016/j.optlaseng.2013.12.006 CrossRefGoogle Scholar
  13. 13.
    Maurya JB, Prajapati YK, Singh V, Saini JP (2015) Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2–SiO2 composite layer. Appl Phys A Mater Sci Process 121(2):525–533. doi: 10.1007/s00339-015-9442-3 CrossRefGoogle Scholar
  14. 14.
    Zeng S, Hu S, Xia J, Anderson T, Dinh X-Q, Meng X-M, Coquet P, Yong K-T (2015) Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sensor Actuat B- Chem 207:801–810. doi: 10.1016/j.snb.2014.10.124 CrossRefGoogle Scholar
  15. 15.
    Gupta BD, Verma RK (2009) Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications. J Sensors 2009:1–12. doi: 10.1155/2009/979761 CrossRefGoogle Scholar
  16. 16.
    Tabassum R, Gupta BD (2016) SPR based fiber-optic sensor with enhanced electric field intensity and figure of merit using different single and bimetallic configurations. Opt Commun 367:23–34. doi: 10.1016/j.optcom.2016.01.014 CrossRefGoogle Scholar
  17. 17.
    Caucheteur C, Guo T, Albert J (2015) Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal Bioanal Chem 407(14):3883–3897. doi: 10.1007/s00216-014-8411-6 CrossRefGoogle Scholar
  18. 18.
    Arghir I, Spasic D, Verlinden BE, Delport F, Lammertyn J (2015) Improved surface plasmon resonance biosensing using silanized optical fibers. Sensor Actuat B- Chem 216:518–526. doi: 10.1016/j.snb.2015.04.069 CrossRefGoogle Scholar
  19. 19.
    Zhao J, Cao S, Liao C, Wang Y, Wang G, Xu X, Fu C, Xu G, Lian J, Wang Y (2016) Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber. Sensor Actuat B- Chem 230:206–211. doi: 10.1016/j.snb.2016.02.020 CrossRefGoogle Scholar
  20. 20.
    Huang Y, Wu D, Chuang C-J, Nie B, Cui H, Yun W (2015) Theoretical analysis of tapered fiber optic surface plasmon resonance sensor for voltage sensitivity. Opt Fiber Technol 22:42–45. doi: 10.1016/j.yofte.2015.01.004 CrossRefGoogle Scholar
  21. 21.
    Arghir I, Delport F, Spasic D, Lammertyn J (2015) Smart design of fiber optic surfaces for improved plasmonic biosensing. New Biotechnol 32(5):473–484. doi: 10.1016/j.nbt.2015.03.012 CrossRefGoogle Scholar
  22. 22.
    Rithesh Raj D, Prasanth S, Vineeshkumar TV, Sudarsanakumar C (2016) Surface plasmon resonance based fiber optic dopamine sensor using green synthesized silver nanoparticles. Sensor Actuat B- Chem 224:600–606. doi: 10.1016/j.snb.2015.10.106 CrossRefGoogle Scholar
  23. 23.
    Dhawan A, Gerhold MD, Muth JF (2008) Plasmonic structures based on subwavelength apertures for chemical and biological sensing applications. IEEE Sensors J 8(6):942–950. doi: 10.1109/JSEN.2008.923933 CrossRefGoogle Scholar
  24. 24.
    Lin Y, Zou Y, Mo Y, Guo J, Lindquist RG (2010) E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing. Sensors 10(10):9397–9406. doi: 10.3390/s101009397 CrossRefGoogle Scholar
  25. 25.
    Novoselov KS, Fal'ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200. doi: 10.1038/nature11458 CrossRefGoogle Scholar
  26. 26.
    Li Y, Yan H, Farmer DB, Meng X, Zhu W, Osgood RM, Heinz TF, Avouris P (2014) Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers. Nano Lett 14(3):1573–1577. doi: 10.1021/nl404824w CrossRefGoogle Scholar
  27. 27.
    Wei W, Nong J, Tang L, Zhu Y, Shi H (2016) Coupling of graphene plasmonics modes induced by near-field perturbation at terahertz frequencies. Plasmonics 11(4):1109–1118. doi: 10.1007/s11468-015-0149-2 CrossRefGoogle Scholar
  28. 28.
    Rodrigo D, Limaj O, Janner D, Etezadi D, Abajo FJGD, Pruneri V, Altug H (2015) Mid-infrared plasmonic biosensing with graphene. Science 349(6244):165–168. doi: 10.1126/science.aab2051 CrossRefGoogle Scholar
  29. 29.
    Wei W, Nong J, Tang L, Zhang G, Yang J, Luo W (2016) Conformal graphene-decorated nanofluidic sensors based on surface plasmons at infrared frequencies. Sensors 16(6):899. doi:  10.3390/s16060899
  30. 30.
    Salihoglu O, Balci S, Kocabas C (2012) Plasmon-polaritons on graphene-metal surface and their use in biosensors. Appl Phys Lett 100(21):213110. doi: 10.1063/1.4721453 CrossRefGoogle Scholar
  31. 31.
    Reckinger N, Vlad A, Melinte S, Colomer J-Fo, Sarrazin Ml (2013) Graphene-coated holey metal films: tunable molecular sensing by surface plasmon resonance. Appl Phys Lett 102:211108. doi:  10.1063/1.4808095
  32. 32.
    Qiu H, Gao S, Chen P, Li Z, Liu X, Zhang C, Xu Y, Jiang S, Yang C, Huo Y, Yue W (2016) Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film. Opt Commun 366:275–281. doi: 10.1016/j.optcom.2015.12.071 CrossRefGoogle Scholar
  33. 33.
    Wu Y, Yao BC, Zhang AQ, Cao XL, Wang ZG, Rao YJ, Gong Y, Zhang W, Chen YF, Chiang KS (2014) Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing. Opt Lett 39(20):6030–6033. doi: 10.1364/OL.39.006030 CrossRefGoogle Scholar
  34. 34.
    Wu Y, Yao B, Zhang A, Rao Y, Wang Z, Cheng Y, Gong Y, Zhang W, Chen Y, Chiang KS (2014) Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing. Opt Lett 39(5):1235–1237. doi: 10.1364/OL.39.001235 CrossRefGoogle Scholar
  35. 35.
    Feng D, Liu G, Zhang M, Jia D (2013) D-shaped fiber optic SPR biosensors based on a metal-graphene structure. Chin Opt Lett 11(11):110607. doi: 10.3788/COL201311.110607 CrossRefGoogle Scholar
  36. 36.
    Fu H, Zhang S, Chen H, Weng J (2015) Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor. IEEE Sensors J 15(10):5478–5482. doi: 10.1109/JSEN.2015.2442276 CrossRefGoogle Scholar
  37. 37.
    Kim SJ, Choi T, Lee B, Lee S, Choi K, Park JB, Yoo JM, Choi YS, Ryu J, Kim P, Hone J, Hong BH (2015) Ultraclean patterned transfer of single-layer graphene by recyclable pressure sensitive adhesive films. Nano Lett. doi: 10.1021/acs.nanolett.5b00440 Google Scholar
  38. 38.
    Kim JA, Hwang T, Dugasani SR, Amin R, Kulkarni A, Park SH, Kim T (2013) Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications. Sensor Actuat B- Chem 187:426–433. doi: 10.1016/j.snb.2013.01.040 CrossRefGoogle Scholar
  39. 39.
    Maharana PK, Srivastava T, Jha R (2014) On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared. Plasmonics 9(5):1113–1120. doi: 10.1007/s11468-014-9721-4 CrossRefGoogle Scholar
  40. 40.
    Palik ED, Ghosh G (1985) Handbook of optical constants of solids. Academic Press, New YorkGoogle Scholar
  41. 41.
    Gan CH, Chu HS, Li EP (2012) Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Phys Rev B 85 12:125431–125439. doi: 10.1103/PhysRevB.85.125431 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education of China, College of Optoelectronic EngineeringChongqing UniversityChongqingChina
  2. 2.Chongqing Research Center for Advanced MaterialsChongqing Academy of Science and TechnologyChongqingChina
  3. 3.Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqingChina
  4. 4.Department of Opto-Electronic EngineeringNational Dong Hwa UniversityHualienChina

Personalised recommendations