, Volume 13, Issue 2, pp 475–481 | Cite as

Design and Analysis of Ultra Broadband Nano-absorber for Solar Energy Harvesting

  • Lu Zhu
  • Yang Wang
  • Yuanyuan Liu
  • Chaozheng Yue


In this paper, we propose a metamaterial based ultra broadband nano-absorber (UBNA) for solar energy harvesting, whose elements consist of a ring column and dual hexagon pillar at the center. In this absorber, the light of shorter wavelengths is harvested at ring column, while the light of longer wavelengths is trapped by dual hexagon pillar. It is found that the average absorptivity of the UBNA is as high as 96% in 300–1300 nm waveband and the UBNA can maintain 95% in the whole visible and near-infrared waveband ranging from 300 to 2000 nm. In addition, the perfect light absorbing capability of the UBNA is independent of the incident light polarization state in the waveband of 300–1300 nm, and it can keep up an average absorptivity of 91% with an large incident angle varying between −60° and 60°. We attribute the perfect absorbing property of UBNA to the synergistic effect of the slow wave effect, Fabry-Perot resonance and the localized surface plasmon resonance enhancement.


Solar energy harvesting Metamaterial Ultra broadband absorber Localized surface plasmon 



The work was supported by the National Nature Science Foundation of China (No. 61162015) and (No. 31101081), the Natural Science Foundation of Jiangxi Province (No. 20161BAB202061), and the Science and Technology Supported Project of Jiangxi Provincial (No. 20151BBE50095).


  1. 1.
    Hong L, Wang XC, Zheng HY, He LN, Wang H, Yu HY, Rusli (2014) High efficiency silicon nanohole/organic heterojunction hybrid solar cell. Appl Phys Lett 104(5):053104–053104-4CrossRefGoogle Scholar
  2. 2.
    Manai L, Rezgui BD, Zaghouani RB, Barakel D, Torchio P, Palais O, Bessais B (2016) Tuning of light trapping and surface plasmon resonance in silver nanoparticles/c-Si structures for solar cells. Plasmonics 11(5):1273–1277CrossRefGoogle Scholar
  3. 3.
    Baldassarre L, Sakat E, Frigerio J, Samarelli A, Gallacher K, Calandrini E, Isella G, Paul JD, Ortolani M, Biagioni P (2015) Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates. Nano Lett 15(11):7225–7231CrossRefGoogle Scholar
  4. 4.
    Peng L, Mortensen NA (2014) Plasmonic-cavity model for radiating nano-rod antennas. Scientific Reports 4(7484):580–580Google Scholar
  5. 5.
    Ding W, Bachelot R, Kostcheev S, Royer P, Lamaestre RE (2010) Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles. J Appl Phys 108(12):124314–124314-6CrossRefGoogle Scholar
  6. 6.
    Giloan M, Astilean S (2014) Negative index optical chiral metamaterial based on asymmetric hexagonal arrays of metallic triangular nanoprisms. Opt Commun 315(315):122–129CrossRefGoogle Scholar
  7. 7.
    Horikawa J, Kawakami A, Hyodo M, Tanaka S, Shimakage H (2014) Evaluation of nano-slot antenna for mid-infrared detectors. Infrared Phys Technol 67:21–24CrossRefGoogle Scholar
  8. 8.
    Ma L, Lin J, Ma Y, Liu B, Tan JB, Jin P (2016) Yagi-Uda optical antenna array collimated laser based on surface plasmons. Opt Commun 368:197–201CrossRefGoogle Scholar
  9. 9.
    Du QG, Kam CH, Demir HV, Yu HY, Su XW (2011) Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications. Opt Lett 36(9):1713–1715CrossRefGoogle Scholar
  10. 10.
    Jérusalem A, Fernández A, Kunz A, Greer JR (2012) Continuum modeling of dislocation starvation and subsequent nucleation in nano-pillar compressions. Scr Mater 66(2):93–96CrossRefGoogle Scholar
  11. 11.
    Najiminaini M, Vasefi F, Kaminska B, Carson JJL (2012) Effect of surface plasmon energy matching on the sensing capability of metallic nano-hole arrays. Applied Physics Letters 100(6):063110-1-063110-4.Google Scholar
  12. 12.
    Xiao SY, Wang T, Liu YB, Xu C, Han X, Yan XC (2016) Tunable light trapping and absorption enhancement with graphene ring arrays. Phys Chem Chem Phys 18(38):26661–26669CrossRefGoogle Scholar
  13. 13.
    Xiao SY, Wang T, Liu YB, Han X., Yan, XC (2016). An ultrasensitive and multispectral refractive index sensor design based on quad-supercell metamaterials. Plasmonics. doi: 10.1007/s11468-016-0248-8
  14. 14.
    Cui Y, Fung KH, Xu J, Ma H, Jin Y, He SL, Fang XN (2012) Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett 12(3):1443–1447CrossRefGoogle Scholar
  15. 15.
    Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2(1):193–198Google Scholar
  16. 16.
    Bossard JA, Lin L, Yun S, Liu L, Werner DH, Mayer TS (2014) Near-ideal optical metamaterial absorbers with super-octave bandwidth. ACS Nano 8(2):1517–1524CrossRefGoogle Scholar
  17. 17.
    Yao G, Ling F, Yue J, Luo C (2015) Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency. IEEE Photonics Journal 8(1):1–8CrossRefGoogle Scholar
  18. 18.
    Liang QY, Wang TS, Lu ZW, Sun Q, Fu YQ, Yu WX (2013) Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting. Advanced Optical Materials 1(1):43–49CrossRefGoogle Scholar
  19. 19.
    Cao SY, Yu WX, Zhang LT, Wang C, Zhang XM, Fu YQ (2014) Broadband efficient light absorbing in the visible regime by a metananoring array. Ann Phys 526(1–2):112–117CrossRefGoogle Scholar
  20. 20.
    Cao SY, Yu WX, Wang T, Xu Z, Wang C, Fu YQ, Liu Y (2013) Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption. Appl Phys Lett 102(16):161109–1-161109 -4CrossRefGoogle Scholar
  21. 21.
    Liu T, Li Y (2016) Photocatalysis: plasmonic solar desalination. Nat Photonics 10(6):361–362CrossRefGoogle Scholar
  22. 22.
    Li W, Valentine J (2014) Metamaterial perfect absorber based hot electron photodetection. Nano Lett 14(6):3510–3514CrossRefGoogle Scholar
  23. 23.
    Tang J, Xiao Z, Xu K, Ma X, Wang Z (2016) Polarization-controlled metamaterial absorber with extremely bandwidth and wide incidence angle. Plasmonics 11(5):1–7CrossRefGoogle Scholar
  24. 24.
    Southwell WH (1991) Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces. J Opt Soc Am A 8(3):549–553CrossRefGoogle Scholar
  25. 25.
    Misra C, Brickley SG, Farrant M, Cull-Candy SG (2015) Localized surface plasmon enhanced emission of organic light emitting diode coupled to DBR-cathode microcavity by using silver nanoclusters. Opt Express 23(18):23647–23659CrossRefGoogle Scholar
  26. 26.
    Li Q, Gao J, Yang H, Liu H (2015) A super meta-cone absorber for near-infrared wavelengths. Plasmonics 11(4):1–6Google Scholar
  27. 27.
    Hao JM, Wang J, Liu XL, Padilla JW, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96(25):251104-1–251104-3CrossRefGoogle Scholar
  28. 28.
    Li ZB, Yang YH, Kong XT, Zhou WY, Tian JG (2009) Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit. Journal of Optics A Pure & Applied Optics 11(10):105002–105005(4)CrossRefGoogle Scholar
  29. 29.
    Wang W, Wu S, Reinhardt K, Lu Y, Chen S (2010) Broadband light absorption enhancement in thin-film silicon solar cells. Nano Lett 10(6):2012–2018CrossRefGoogle Scholar
  30. 30.
    Zhang W, Li W, Yao J (2016) Optically tunable Fano resonance in a grating-based Fabry–Perot cavity-coupled microring resonator on a silicon chip. Opt Lett 41(11):2474–2477CrossRefGoogle Scholar
  31. 31.
    Zhang N, Zhou PH, Wang SY, Weng XL, Xie JL, Deng LJ (2015) Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers. Opt Commun 338:388–392CrossRefGoogle Scholar
  32. 32.
    Di VM, Kuang YH, van Duren SN, Charry JM, van Di jk L, Schropp RE (2012) Plasmonic nano-antenna a-Si:H solar cell. Opt Express 20(25):27327–27336CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Lu Zhu
    • 1
  • Yang Wang
    • 1
  • Yuanyuan Liu
    • 1
  • Chaozheng Yue
    • 1
  1. 1.Department of Information EngineeringEast China Jiaotong UniversityNanchangChina

Personalised recommendations