Skip to main content

Advertisement

Log in

Design and Analysis of Ultra Broadband Nano-absorber for Solar Energy Harvesting

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we propose a metamaterial based ultra broadband nano-absorber (UBNA) for solar energy harvesting, whose elements consist of a ring column and dual hexagon pillar at the center. In this absorber, the light of shorter wavelengths is harvested at ring column, while the light of longer wavelengths is trapped by dual hexagon pillar. It is found that the average absorptivity of the UBNA is as high as 96% in 300–1300 nm waveband and the UBNA can maintain 95% in the whole visible and near-infrared waveband ranging from 300 to 2000 nm. In addition, the perfect light absorbing capability of the UBNA is independent of the incident light polarization state in the waveband of 300–1300 nm, and it can keep up an average absorptivity of 91% with an large incident angle varying between −60° and 60°. We attribute the perfect absorbing property of UBNA to the synergistic effect of the slow wave effect, Fabry-Perot resonance and the localized surface plasmon resonance enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hong L, Wang XC, Zheng HY, He LN, Wang H, Yu HY, Rusli (2014) High efficiency silicon nanohole/organic heterojunction hybrid solar cell. Appl Phys Lett 104(5):053104–053104-4

    Article  Google Scholar 

  2. Manai L, Rezgui BD, Zaghouani RB, Barakel D, Torchio P, Palais O, Bessais B (2016) Tuning of light trapping and surface plasmon resonance in silver nanoparticles/c-Si structures for solar cells. Plasmonics 11(5):1273–1277

    Article  CAS  Google Scholar 

  3. Baldassarre L, Sakat E, Frigerio J, Samarelli A, Gallacher K, Calandrini E, Isella G, Paul JD, Ortolani M, Biagioni P (2015) Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates. Nano Lett 15(11):7225–7231

    Article  CAS  Google Scholar 

  4. Peng L, Mortensen NA (2014) Plasmonic-cavity model for radiating nano-rod antennas. Scientific Reports 4(7484):580–580

    Google Scholar 

  5. Ding W, Bachelot R, Kostcheev S, Royer P, Lamaestre RE (2010) Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles. J Appl Phys 108(12):124314–124314-6

    Article  Google Scholar 

  6. Giloan M, Astilean S (2014) Negative index optical chiral metamaterial based on asymmetric hexagonal arrays of metallic triangular nanoprisms. Opt Commun 315(315):122–129

    Article  CAS  Google Scholar 

  7. Horikawa J, Kawakami A, Hyodo M, Tanaka S, Shimakage H (2014) Evaluation of nano-slot antenna for mid-infrared detectors. Infrared Phys Technol 67:21–24

    Article  Google Scholar 

  8. Ma L, Lin J, Ma Y, Liu B, Tan JB, Jin P (2016) Yagi-Uda optical antenna array collimated laser based on surface plasmons. Opt Commun 368:197–201

    Article  CAS  Google Scholar 

  9. Du QG, Kam CH, Demir HV, Yu HY, Su XW (2011) Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications. Opt Lett 36(9):1713–1715

    Article  CAS  Google Scholar 

  10. Jérusalem A, Fernández A, Kunz A, Greer JR (2012) Continuum modeling of dislocation starvation and subsequent nucleation in nano-pillar compressions. Scr Mater 66(2):93–96

    Article  Google Scholar 

  11. Najiminaini M, Vasefi F, Kaminska B, Carson JJL (2012) Effect of surface plasmon energy matching on the sensing capability of metallic nano-hole arrays. Applied Physics Letters 100(6):063110-1-063110-4.

  12. Xiao SY, Wang T, Liu YB, Xu C, Han X, Yan XC (2016) Tunable light trapping and absorption enhancement with graphene ring arrays. Phys Chem Chem Phys 18(38):26661–26669

    Article  CAS  Google Scholar 

  13. Xiao SY, Wang T, Liu YB, Han X., Yan, XC (2016). An ultrasensitive and multispectral refractive index sensor design based on quad-supercell metamaterials. Plasmonics. doi:10.1007/s11468-016-0248-8

  14. Cui Y, Fung KH, Xu J, Ma H, Jin Y, He SL, Fang XN (2012) Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett 12(3):1443–1447

    Article  CAS  Google Scholar 

  15. Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2(1):193–198

    Google Scholar 

  16. Bossard JA, Lin L, Yun S, Liu L, Werner DH, Mayer TS (2014) Near-ideal optical metamaterial absorbers with super-octave bandwidth. ACS Nano 8(2):1517–1524

    Article  CAS  Google Scholar 

  17. Yao G, Ling F, Yue J, Luo C (2015) Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency. IEEE Photonics Journal 8(1):1–8

    Article  CAS  Google Scholar 

  18. Liang QY, Wang TS, Lu ZW, Sun Q, Fu YQ, Yu WX (2013) Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting. Advanced Optical Materials 1(1):43–49

    Article  Google Scholar 

  19. Cao SY, Yu WX, Zhang LT, Wang C, Zhang XM, Fu YQ (2014) Broadband efficient light absorbing in the visible regime by a metananoring array. Ann Phys 526(1–2):112–117

    Article  CAS  Google Scholar 

  20. Cao SY, Yu WX, Wang T, Xu Z, Wang C, Fu YQ, Liu Y (2013) Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption. Appl Phys Lett 102(16):161109–1-161109 -4

    Article  Google Scholar 

  21. Liu T, Li Y (2016) Photocatalysis: plasmonic solar desalination. Nat Photonics 10(6):361–362

    Article  CAS  Google Scholar 

  22. Li W, Valentine J (2014) Metamaterial perfect absorber based hot electron photodetection. Nano Lett 14(6):3510–3514

    Article  CAS  Google Scholar 

  23. Tang J, Xiao Z, Xu K, Ma X, Wang Z (2016) Polarization-controlled metamaterial absorber with extremely bandwidth and wide incidence angle. Plasmonics 11(5):1–7

    Article  Google Scholar 

  24. Southwell WH (1991) Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces. J Opt Soc Am A 8(3):549–553

    Article  CAS  Google Scholar 

  25. Misra C, Brickley SG, Farrant M, Cull-Candy SG (2015) Localized surface plasmon enhanced emission of organic light emitting diode coupled to DBR-cathode microcavity by using silver nanoclusters. Opt Express 23(18):23647–23659

    Article  Google Scholar 

  26. Li Q, Gao J, Yang H, Liu H (2015) A super meta-cone absorber for near-infrared wavelengths. Plasmonics 11(4):1–6

    Google Scholar 

  27. Hao JM, Wang J, Liu XL, Padilla JW, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96(25):251104-1–251104-3

    Article  Google Scholar 

  28. Li ZB, Yang YH, Kong XT, Zhou WY, Tian JG (2009) Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit. Journal of Optics A Pure & Applied Optics 11(10):105002–105005(4)

    Article  Google Scholar 

  29. Wang W, Wu S, Reinhardt K, Lu Y, Chen S (2010) Broadband light absorption enhancement in thin-film silicon solar cells. Nano Lett 10(6):2012–2018

    Article  CAS  Google Scholar 

  30. Zhang W, Li W, Yao J (2016) Optically tunable Fano resonance in a grating-based Fabry–Perot cavity-coupled microring resonator on a silicon chip. Opt Lett 41(11):2474–2477

    Article  Google Scholar 

  31. Zhang N, Zhou PH, Wang SY, Weng XL, Xie JL, Deng LJ (2015) Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers. Opt Commun 338:388–392

    Article  CAS  Google Scholar 

  32. Di VM, Kuang YH, van Duren SN, Charry JM, van Di jk L, Schropp RE (2012) Plasmonic nano-antenna a-Si:H solar cell. Opt Express 20(25):27327–27336

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Nature Science Foundation of China (No. 61162015) and (No. 31101081), the Natural Science Foundation of Jiangxi Province (No. 20161BAB202061), and the Science and Technology Supported Project of Jiangxi Provincial (No. 20151BBE50095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Wang, Y., Liu, Y. et al. Design and Analysis of Ultra Broadband Nano-absorber for Solar Energy Harvesting. Plasmonics 13, 475–481 (2018). https://doi.org/10.1007/s11468-017-0533-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0533-1

Keywords

Navigation