Advertisement

Plasmonics

, Volume 13, Issue 2, pp 459–466 | Cite as

A Novel Terahertz Semiconductor Metamaterial for Slow Light Device and Dual-Band Modulator Applications

  • A Keshavarz
  • A Zakery
Article

Abstract

In this paper, we propose a novel planar semiconductor metamaterial which consists of two H-shape structures which are nested together and composed of InSb deposited on a thin quartz substrate. The two H-shape structures serve as the bright modes and are exited strongly by the incident wave and interact with each other. This coupling leads to a powerful plasmonically induced transparency (PIT) effect at terahertz frequencies. This scheme provides a way to achieve slow light, and the corresponding group index can reach a value of 1300. We calculated group velocity dispersion (GVD) and saw this structure was a low group velocity dispersion (LGVD) system. Therefore, the proposed structure will be useful in designing slow-light devices, optical buffers, delay lines, and ultra-sensitive sensors. We also showed that the proposed design is tunable, namely changes in geometric parameters and type of semiconductor can largely change the group index. In addition, we considered another application for our design that is a thermal dual-band terahertz metamaterial modulator and numerically obtained frequency and amplitude modulation depth, tunability bandwidth, and loss for this device. We obtained an amplitude modulator depth of 99.7 % and a frequency modulator depth of 47 % that verified this structure can be used in wireless communication and encode information systems in the THz regime.

Keywords

Electromagnetically induced transparency Semiconductors Metamaterials Slow light 

Notes

Acknowledgments

Authors are grateful to Dr. Z. Vafapour from the Johns Hopkins university for useful discussions.

References

  1. 1.
    Tucker RS, Ku PC, Chang-Hasnain CJ (2005) Slow-Light Optical Buffers: Capabilities and Fundamental Limitations. J Light Technol 23(12):4046CrossRefGoogle Scholar
  2. 2.
    Krauss TF (2008) Why do we need slow light?. Nat Photonics 2:448–450CrossRefGoogle Scholar
  3. 3.
    Braje DA, Bali V, Yin GY, Harris SE (2003) Low-light-level nonlinear optics with slow light. Phys Rev A 68(4):041801CrossRefGoogle Scholar
  4. 4.
    Chen J, Wang P, Chen C, Lu Y, Ming H, Zhan Q (2011) Plasmonic EIT-like Switching in Bright-Dark-Bright Plasmon Resonators. Opt Express 19(7):5970–5978CrossRefGoogle Scholar
  5. 5.
    Palinginis P, Sedgwick F, Crankshaw S, Moewe M, Chang-Hasnain C (2005) Room temperature slow light in a quantum-well waveguide via coherent population oscillation. Opt Express 13(24):9909–9915CrossRefGoogle Scholar
  6. 6.
    Qin G, Jose R, Ohishi Y (2007) Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation. J Appl Phys 101(9):093109CrossRefGoogle Scholar
  7. 7.
    Herraez MG, Song KY, Thevenaz L (2005) Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering. Appl Phys Lett 87(8):81113CrossRefGoogle Scholar
  8. 8.
    Vafapour Z, Alaei H (2016) Achieving a High Q-Factor and Tunable Slow-Light via Classical Electromagnetically Induced Transparency (Cl-EIT) in Metamaterials, Plasmonics, doi: 10.1007/s11468-016-0288-0
  9. 9.
    Hau LV, Harris SE, Dutton Z, Behroozi CH (1999) Light speed reduction to 17 meters per second in an ultra-cold atomic gas. Nature 397:594–598CrossRefGoogle Scholar
  10. 10.
    Baba T (2008) Slow light in photonic crystals. Nat Photonics 2:465–473CrossRefGoogle Scholar
  11. 11.
    Chen Z, Wang W, Cui L, Yu L, Duan G, Zhao Y, Xiao J (2015) Spectral Splitting Based on Electromagnetically Induced Transparency in Plasmonic Waveguide Resonator System. Plasmonics 10(3):721–727CrossRefGoogle Scholar
  12. 12.
    Lin CX, Zhang W, Huang YD, Peng JD (2007) Zero dispersion slow light with low leakage loss in defect Bragg fiber. Appl Phys Lett 90(3):031109CrossRefGoogle Scholar
  13. 13.
    Hokmabadi MP, Kim J, Rivera E, Kung P, Kim SM (2015) Impact of Substrate and Bright Resonances on Group Velocity in Metamaterial without Dark Resonator. Sci Rep 5:14373CrossRefGoogle Scholar
  14. 14.
    Liu X, Gu J, Singh R, Ma Y, Zhu J, Tian Z, He M, Han J, Zhang W (2012) Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode. Appl Phys Lett 100(13):131101CrossRefGoogle Scholar
  15. 15.
    Vafapour Z (2017) Near infrared Biosensor based on Classical Electromagnetically Induced Reflectance (Cl-EIR) in a planar complementary Metamaterial. Opt Commun 387:1–11. doi: 10.1016/j.optcom.2016.11.031 CrossRefGoogle Scholar
  16. 16.
    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H (2010) Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing. Nano Lett 10(4):1103–1107CrossRefGoogle Scholar
  17. 17.
    Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier SA, Tian Z, Azad AK, Chen HT, Taylor AJ, Han J, Zhang W (2012) Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun Article number 3:1151CrossRefGoogle Scholar
  18. 18.
    Vafapour Z, Forouzeshfard MR (2016) Disappearance of Plasmonically Induced Reflectance by Breaking Symmetry in Metamaterials, Plasmonics. doi: 10.1007/s11468-016-0391-2
  19. 19.
    Wang K, Mittleman DM (2004) Metal wires for terahertz wave guiding. Nature 432:376–379CrossRefGoogle Scholar
  20. 20.
    Zhu W, RukhlenkoI D, Premaratne M (2013) Graphene metamaterial for optical reflection modulation. Appl Phys Lett 102(24):241914CrossRefGoogle Scholar
  21. 21.
    Nouman MT, Kim HW, Woo JM, Hwang JH, Kim D, Jang JH (2016) Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors. Sci Rep 6 :26452CrossRefGoogle Scholar
  22. 22.
    Finck ADK, Van Harlingen DJ, Mohseni PK, Jung K, Li X (2013) Anomalous modulation of a Zero-Bias peak in a hybrid Nanowire-Superconductor device. Phys Rev Lett 110(12):126406Google Scholar
  23. 23.
    Madelung O (1991) Semiconductors: Group IV Elements and III-V Compounds. Springer, New YorkCrossRefGoogle Scholar
  24. 24.
    Bai Q, Liu C, Chen J, Cheng C, Kang M, Wang HT (2010) Tunable slow light in semiconductor metamaterial in a broad terahertz Regime. J Appl Phys 107(9):093104CrossRefGoogle Scholar
  25. 25.
    Han J, Lakhtakia A (2009) Semiconductor split-ring resonators for thermally tunable terahertz metamaterials. J Mod Opt 56(4):554–557CrossRefGoogle Scholar
  26. 26.
    Halevi P, Mendieta FR (2000) Tunable photonic crystals with semiconducting constituents. Phys Rev Lett 85(9):1875CrossRefGoogle Scholar
  27. 27.
    Vafapour Z, Zakery A (2015) New regime of plasmonically induced transparency. Plasmonics 10(6):1809–1815CrossRefGoogle Scholar
  28. 28.
    Li Z, Ma Y, Huang R, Singh R, Gu J, Tian Z, Han J, Zhang W (2011) Manipulating the plasmon-induced transparency in terahertz metamaterials. Opt Express 19(9):8912–8919CrossRefGoogle Scholar
  29. 29.
    Zhu L, Meng FY, Fu JH, Wu Q, Hua J (2012) Multi-band slow light metamaterial. Opt Express 20(4):4494–4502CrossRefGoogle Scholar
  30. 30.
    Zhan S, Li H, Cao G, He Z, Li B, Yang H (2014) Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system. J Phys D: Appl Phys 47(20):205101CrossRefGoogle Scholar
  31. 31.
    He XJ, Li TY, Wang L, Wang JM, Tian XH, Jiang JX, Geng ZX (2014) Electromagnetically induced transparency and slow light in a simple complementary metamaterial constructed by two bright slot-structures. Appl Phys A 116(2):799–804CrossRefGoogle Scholar
  32. 32.
    Vafapour Z, Alaei H (2016) Subwavelength micro-antenna for achieving slow light at microwave wavelengths via electromagnetically induced transparency in 2-D metamaterial, Plasmonics, doi: 10.1007/s11468-016-0392-1
  33. 33.
    Izadshenas S, Zakery A, Vafapour Z (2016) Tunable slow light in graphene metamaterial in a broad terahertz range, Plasmonics, doi: 10.1007/s11468-016-0484-y
  34. 34.
    Lai G, Liang R, Zhang Y, Bian Z, Yi L, Zhan G, Zhao R (2015) Double plasmonic nanodisks design for electromagnetically induced transparency and slow light. Opt Express 23(5):6554–6561CrossRefGoogle Scholar
  35. 35.
    Smith D, Shiles E, Inokuti M, Palik D. (eds) (1985) Handbook of optical constants of solids. Academic, San DiegoGoogle Scholar
  36. 36.
    Vafapour Z, Zakery A (2016) New Approach of Plasmonically Induced Reflectance in a Planar Metamaterial for Plasmonic Sensing Applications. plasmonics 11(2):609–618CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceShiraz UniversityShirazIran

Personalised recommendations