, Volume 13, Issue 2, pp 451–457 | Cite as

Dynamically Tunable Electromagnetically Induced Transparency in Graphene and Split-Ring Hybrid Metamaterial

  • Zhong Huang
  • Yunyun Dai
  • Guangxu Su
  • Zhendong Yan
  • Peng Zhan
  • Fanxin Liu
  • Zhenlin Wang


In this letter, a novel hybrid metamaterial consisting of periodic array of graphene nano-patch and gold split-ring resonator has been theoretically proposed to realize an active control of the electromagnetically induced transparency analog in the mid-infrared regime. A narrow transparency window occurs over a wide absorption band due to the coupling of the high-quality factor mode provided by graphene dipolar resonance and the low-quality factor mode of split-ring resonator magnetic resonance, which is interpreted in terms of the phase change and surface charge distribution. In addition to the obvious dependence of the spectral feature on the geometric parameters of the elements and the surrounding environmental dielectric constant, our proposed metamaterial shows great tunabilities to the transparency window by tuning the Fermi energy of the graphene nano-patch through electric gating and its electronic mobility without changing the geometric parameters. Furthermore, our proposed metamaterial combines low losses with very large group index associated with the resonance response in the transparency window, showing it suitable for slow light applications and nanophotonic devices for light filter and biosensing.


Graphene Electromagnetically induced transparency Split-ring resonator Near-field coupling Slow light 



This work was supported by the State Key Program for Basic Research of China (Grant No. 2013CB632703), and by the National Nature Science Foundation of China (Grant Nos. 11674166, 91221206, 51271092, and 11574270).


  1. 1.
    Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82:2257–2298CrossRefGoogle Scholar
  2. 2.
    Chiam SY, Singh R, Rockstuhl C, Lederer F, Zhang W, Bettiol AA (2009) Analogue of electromagnetically induced transparency in a terahertz metamaterial. Phys Rev B 80:153103CrossRefGoogle Scholar
  3. 3.
    Lukyanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715CrossRefGoogle Scholar
  4. 4.
    Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S (2012) Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun 3:1151CrossRefGoogle Scholar
  5. 5.
    Zhu Z, Yang X, Gu J, Jiang J, Yue W, Tian Z (2013) Broadband plasmon induced transparency in terahertz metamaterials. Nanotechnology 24:214003CrossRefGoogle Scholar
  6. 6.
    Yin X, Feng T, Yip S, Liang Z, Hui A, Ho J (2013) Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules. Appl Phys Lett 103:021115CrossRefGoogle Scholar
  7. 7.
    Gao W, Shu J, Qiu C, Xu Q (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6:7806–7813CrossRefGoogle Scholar
  8. 8.
    Gao W, Shi G, Jin Z, Shu J, Zhang Q, Vajtai R (2013) Excitation and active control of propagating surface plasmon polaritons in graphene. Nano Lett 13:3698–3702CrossRefGoogle Scholar
  9. 9.
    Avouris P, Freitag M (2014) Graphene photonics, plasmonics, and optoelectronics. IEEE J Quantum Elect 20:6000112Google Scholar
  10. 10.
    García de Abajo FJ (2014) Graphene plasmonics: challenges and opportunities. ACS Photonics 1:135–152CrossRefGoogle Scholar
  11. 11.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  12. 12.
    Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308CrossRefGoogle Scholar
  13. 13.
    Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6:749–758CrossRefGoogle Scholar
  14. 14.
    Yu R, Pruneri V, García de Abajo FJ (2015) Resonant visible light modulation with graphene. ACS Photonics 2:550–558CrossRefGoogle Scholar
  15. 15.
    Shen Q, Hou B, Chen Z, Wang Z (2012) Effect of gap width on enhanced magnetic optical fields in metallic split ring resonators. AIP Adv 2:042175CrossRefGoogle Scholar
  16. 16.
    Zhang C, Chang H, Zhao F, Hu X (2013) Design principle of Au grating couplers for quantum-well infrared photodetectors. Opt Lett 38:4037–4039CrossRefGoogle Scholar
  17. 17.
    Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo FJ, Pruneri V (2015) Mid-infrared plasmonic biosensing with graphene. Science 349:165–168CrossRefGoogle Scholar
  18. 18.
    Li Y (2015) Probing the response of two-dimensional crystals by optical spectroscopy: SpringerGoogle Scholar
  19. 19.
    Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8:1086–1101CrossRefGoogle Scholar
  20. 20.
    Liu N, Liu H, Zhu S, Giessen H (2009) Stereometamaterials. Nat Photonics 3:157–162CrossRefGoogle Scholar
  21. 21.
    Thongrattanasiri S, Koppens FHL, García de Abajo FJ (2012) Complete optical absorption in periodically patterned graphene. Phys Rev Lett 108:047401CrossRefGoogle Scholar
  22. 22.
    Jablan M, Buljan H, Soljačić M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80:245435CrossRefGoogle Scholar
  23. 23.
    Tassin P, Zhang L, Koschny T, Economou EN, Soukoulis CM (2009) Low-loss metamaterials based on classical electromagnetically induced transparency. Phys Rev Lett 102:053901CrossRefGoogle Scholar
  24. 24.
    Chen J, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3:206–209CrossRefGoogle Scholar
  25. 25.
    Fleischhauer M, Lmamoglu A, Marangos JP (2005) Electromagnetically induced transparency: Optics in coherent media. Rev Mod Phys 77:633–673CrossRefGoogle Scholar
  26. 26.
    Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:047401CrossRefGoogle Scholar
  27. 27.
    Nikitin AY, Guinea F, Garcia-Vidal FJ, Martin-Moreno L (2012) Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Phys Rev B 85:081405CrossRefGoogle Scholar
  28. 28.
    Wang L, Meric I, Huang P, Gao Q, Gao Y, Tran H (2013) One-dimensional electrical contact to a two-dimensional material. Science 342:614–617CrossRefGoogle Scholar
  29. 29.
    Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5:722–726CrossRefGoogle Scholar
  30. 30.
    Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRefGoogle Scholar
  31. 31.
    Zhang L, Tassin P, Koschny T, Kurter C, Anlage SM, Soukoulis CM (2010) Large group delay in a microwave metamaterial analog of electromagnetically induced transparency. Appl Phys Lett 97:241904CrossRefGoogle Scholar
  32. 32.
    Smith DR, Vier DC, Koschny T, Soukoulis CM (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71:036617CrossRefGoogle Scholar
  33. 33.
    Shi X, Han D, Dai Y, Yu Z, Sun Y, Chen H (2013) Plasmonic analog of electromagnetically induced transparency in nanostructure graphene. Opt Express 21:28438–28443CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Physics and National Laboratory of Solid State MicrostructuresNanjing UniversityNanjingChina
  2. 2.Department of Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Key Laboratory of Surface PhysicsFudan UniversityShanghaiChina
  3. 3.Collaborative Innovation Center of Advanced MicrostructuresNanjingChina
  4. 4.Department of Applied PhysicsZhejiang University of TechnologyHangzhouChina

Personalised recommendations