, Volume 13, Issue 2, pp 437–444 | Cite as

Plasmon Responses in the Sodium Tungsten Bronzes

  • L. Tegg
  • D. Cuskelly
  • V. J. Keast


The sodium tungsten bronzes (Na x WO3) are vividly coloured metallic materials where the optical behaviour can be attributed to the bulk plasma frequency occurring in the visible part of the spectrum. A combination of density functional theory (DFT) calculations and experimental electron energy-loss spectroscopy (EELS) was used to assess their bulk and surface plasmon responses. It was observed that Na x WO3 can sustain strong localised surface plasmon resonances (LSPR) with an energy that can be tuned by changing the Na content. They have a stronger plasmonic response when compared to Au and do not suffer from the atmospheric corrosion of Ag, giving them good potential for plasmonic applications.


Tungsten bronze Localised surface plasmon resonance Electron energy-loss spectroscopy (EELS) Density functional theory (DFT) 



This research was supported under Australian Research Council’s Discovery Projects funding scheme (Project Number DP120102545) and used equipment funded by the Australian Research Council (ARC)—Linkage, Infrastructure, Equipment and Facilities (LIEF) grant LE120100104 located at the UOW Electron Microscopy Centre. Technical support was provided by D.R.G. Mitchell is acknowledged. Mie theory calculations were performed using the ACEOS code, written by T.A. Myles.


  1. 1.
    Guler U, Kildishev AV, Boltasseva A, Shalaev VM (2015) Plasmonics on the slope of enlightenment: the role of transition metal nitrides. Faraday Discuss 178:71–86CrossRefGoogle Scholar
  2. 2.
    Khurgin JB, Boltasseva A (2012) Reflecting upon the losses in plasmonics and metamaterials. MRS Bull 37:768–779CrossRefGoogle Scholar
  3. 3.
    Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25:3264–3294CrossRefGoogle Scholar
  4. 4.
    West PR, Ishii S, Naik GV, Emani NK, Shaleev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photon Rev 4(6):795–808CrossRefGoogle Scholar
  5. 5.
    Comin A, Manna L (2014) New materials for tunable plasmonic colloidal nanocrystals. Chem Soc Rev 43:3957–3975CrossRefGoogle Scholar
  6. 6.
    Keast VJ, Bosman M (2008) Applications and theoretical simulation of low-loss electron energy-loss spectra. Mater Sci Technol 24(6):651–659CrossRefGoogle Scholar
  7. 7.
    Dastmalchi B, Tassin P, Koschny T, Soukalis CM (2016) A new perspective on plasmonics: confinement and propagation length of surface plasmons for different materials and geometries. Adv Opt Mat 4:177–184CrossRefGoogle Scholar
  8. 8.
    Lalisse A, Tessier G, Plain J, Baffou G (2015) Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. J Phys Chem C 119:25518–25528CrossRefGoogle Scholar
  9. 9.
    Cao W, Elsayed-Ali HE (2009) Stability of Ag nanoparticles fabricated by electron beam lithography. Mater Lett 63:2263–2266CrossRefGoogle Scholar
  10. 10.
    Elechiguerra JL, Larios-Lopez L, Lui C, Garcia-Gutierrez D, Camacho-Bragado A, Yacaman MJ (2005) Corrosion at the nanoscale: the case of silver nanowires and nanoparticles. Chem Mater 17:6042–6052CrossRefGoogle Scholar
  11. 11.
    Levard C, Hotze EM, Lowry GV, Brown GE (2012) Environmental transformations of silver nanoparticles: impact of stability and toxicity. Environ Sci Technol 46:6900–6914CrossRefGoogle Scholar
  12. 12.
    Clarke R (1977) New sequence of structural phase transitions in NaxWO3. Phys Rev Lett 39(24):1550–1553CrossRefGoogle Scholar
  13. 13.
    Dickens PG, Whittingham MS (1968) The tungsten bronzes and related compounds. Q Rev Chem Soc 22:30–44CrossRefGoogle Scholar
  14. 14.
    Ribnick AS, Post B, Banks E (1963) Phase transitions in sodium tungsten bronzes. In: Ward R (ed) Advances in Chemistry, Nonstiochiometric Compounds. American Chemical Society, Washington SC, pp 246–253Google Scholar
  15. 15.
    Wöhler F (1825) Sue le Tungstène. Annales de chimie et de physique 29:43–53Google Scholar
  16. 16.
    Hagenmuller P (1975) Tungsten bronzes, vanadium bronzes and related compounds. In: Bevan DJM, Hagenmuller P (eds) Nonstoichiometric compounds. Elsevier, Great Britain, pp 541–567Google Scholar
  17. 17.
    Deb SK (2008) Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Sol Energy Mater Sol Cells 92:245–258CrossRefGoogle Scholar
  18. 18.
    Granqvist CG (2014) Electrochromics for smart windows: oxide based thin films and devices. Thin Solid Films 564:1–38CrossRefGoogle Scholar
  19. 19.
    Kopp L, Harmon BN, Liu SH (1977) Band structure of cubic NaxWO3. Solid State Comm 22:677–679CrossRefGoogle Scholar
  20. 20.
    Bullett DW (1983) A theoretical study of the x-dependence of the conduction-band density of states in metallic sodium tungsten bronzes NaxWO3. Solid State Comm 46(7):575–577CrossRefGoogle Scholar
  21. 21.
    Bullett DW (1983) Bulk and surface electron states in WO3 and tungsten bronzes. J Phys C Solid State Phys 16:2197–2207CrossRefGoogle Scholar
  22. 22.
    Wolfram T, Sutco L (1985) x-dependence of the electronic properties of cubic NaxWO3. Phys Rev B 31(12):7680–7687CrossRefGoogle Scholar
  23. 23.
    Corà F, Stachiotti MG, Catlow CRA, Rodriguez CO (1997) Transition metal oxide chemistry: electronic structure study of WO3, ReO3 and NaWO3. J Phys Chem B 101:3945–3952CrossRefGoogle Scholar
  24. 24.
    Ingham B, Hendy SC, Chong SV, Tallon JL (2005) Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems. Phys Rev B 72(075109)Google Scholar
  25. 25.
    Christensen NE, Mackintosh AR (1987) Electronic structure of cubic sodium tungsten bronze. Phys Rev B 35(15):8246–8248CrossRefGoogle Scholar
  26. 26.
    Lynch DW, Rosei R, Weaver JH, Olson CG (1973) The optical properties of some alkali metal tungsten bronzes from 0.1 t0 38 eV. J Solid State Chem 8:242–252CrossRefGoogle Scholar
  27. 27.
    Consadori F, Stella A (1970) Optical reflectivity of NaxWO3. Lett Nuovo Cimento 3(18):600–603CrossRefGoogle Scholar
  28. 28.
    Camagni P, Manara A, Campagnoli G, Gustinetti A, Stella A (1977) Optical properties of metallic sodium tungsten bronzes: analysis of free- and bound-electron contributions. Phys Rev Lett 15(10):4626–4630Google Scholar
  29. 29.
    Owen JF, Teegarden KJ, Shanks HR (1978) Optical properties of the sodium-tungsten bronzes and tungsten trioxide. Phys Rev B 18(8):3827–3837CrossRefGoogle Scholar
  30. 30.
    Dietz RE, Campagna M, Chazalviel JN, Shanks HR (1978) Inelastic electron scattering by intra- and interband plasmons in henium trioxide, tungsten trioxide, and some tungsten bronzes. Phys Rev B 17(10):3790–3800CrossRefGoogle Scholar
  31. 31.
    Langell MA, Bernasek SL (1981) High-energy-electron-loss spectroscopy of WO3(100) and NaxWO3(100) single crystal surfaces. Phys Rev B 23(4):1584–1593CrossRefGoogle Scholar
  32. 32.
    Egdell RG, Hill MD (1982) A study of the sodium tungsten bronzes by high-resolution electron energy loss spectroscopy. Chem Phys Lett 88(5):503–507CrossRefGoogle Scholar
  33. 33.
    Hill MD, Egdell RG (1983) The sodium tungsten bronzes: a study of the changes in electronic structure with composition using high-resolution electron spectroscopy. J Phys C: Solid St Phys 16:6205–6220CrossRefGoogle Scholar
  34. 34.
    Takeda H, Adachi K (2007) Near infrared absorption of tungsten oxide nanoparticle dispersions. J Am Cer Soc 90(12):4059–4061Google Scholar
  35. 35.
    Sato Y, Terauchi M, Adachi K (2012) High energy-resolution electron energy-loss spectroscopy study on the near-infrared scattering mechanism of Cs0.33WO3 crystals and nanoparticles. J Appl Phys 112:074308CrossRefGoogle Scholar
  36. 36.
    Mattox TM, Bergerud A, Agrawal A, Milliron DJ (2014) Influence of shape on the surface plasmon resonance of tungsten bronze nanocrystals. Chem Mater 26:1779–1784CrossRefGoogle Scholar
  37. 37.
    Tian G, Zhang X, Zheng X, Yin W, Ruan L, Liu X, Zhou L, Yan L, Li S, Gu Z, Zhao Y (2014) Multifunctional RbxWO3 nanorods for simultaneous combined chemo-photothermal therapy and photoacoustic/CT imaging. Small 10(20):4160–4170Google Scholar
  38. 38.
    Guo C, Yin S, Yu H, Liu S, Dong Q, Goto T, Zhang Z, Li Y, Sato T (2013) Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infrared absorption. Nanoscale 5:6469–6478CrossRefGoogle Scholar
  39. 39.
    Raj S, Matsui H, Souma S, Sato T, Takahashi T, Chakraborty A, Sarma DD, Mahadevan P, Oisha S, McCarroll WH, Greenblatt M (2007) Electronic structure of sodium tungsten bronzes NaxWO3 by high-resolution angle-resolved photoemission spectroscopy. Phys Rev B 75:155116CrossRefGoogle Scholar
  40. 40.
    Shanks HR (1972) Growth of tungsten bronze crystals by fused salt electrolysis. J Cryst Growth 13(14):433–477CrossRefGoogle Scholar
  41. 41.
    Zhong Q, Dahn JR, Colbow K (1992) Lithium intercalation into WO3 and the phase diagram of LixWO3. Phys Rev B 46(4):2554–2560CrossRefGoogle Scholar
  42. 42.
    Eyassu T, Hsaio TJ, Lin CT (2015) Facile solvothermal synthesis of NIR absorbing CsxWO3 nanorods benzyl alcohol route. Mat Res Express 2:015016CrossRefGoogle Scholar
  43. 43.
    Guo C, Yin S, Sato T (2011) Facile synthesis of homogenous CsxWO3 nanorods with excellent low-emissivity and NIR shielding property by a water controlled-release process. J Mater Chem 21:5099–5105CrossRefGoogle Scholar
  44. 44.
    Guo C, Yin S, Zhang P, Yan M, Adachi K, Chonan T, Sato T (2010) Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process. J Mater Chem 20:8227–8229CrossRefGoogle Scholar
  45. 45.
    Liu JX, Ando Y, Dong XL, Shi F, Yin S, Adachi K, Chonan T, Tanaka A, Sato T (2010) Microstructure and electrical-optical properties of cesium tungsten oxides synthesized by solvothermal reaction followed by ammonia annealing. J Solid State Chem 183:2456–2460CrossRefGoogle Scholar
  46. 46.
    Colliex C, Kociak M, Stéphan O (2016) Electron energy loss spectroscopy imaging of surface plasmons at the nanometer scale. Ultramicroscopy 162:A1–A24CrossRefGoogle Scholar
  47. 47.
    Garcia de Abajo FJ (2010) Optical excitations in electron microscopy. Rev Mod Phys 82:209–275CrossRefGoogle Scholar
  48. 48.
    Kociak M, Stéphan O (2014) Mapping plasmons at the nanometer scale in an electron microscope. Chem Soc Rev 43:3865–3883CrossRefGoogle Scholar
  49. 49.
    Brown BW, Banks E (1954) The sodium tungsten bronzes. J Am Chem Soc 76:963–966CrossRefGoogle Scholar
  50. 50.
    Straumanis ME (1949) The sodium tungsten bronzes: I. chemical properties and structure. J Am Chem Soc 71:679–683CrossRefGoogle Scholar
  51. 51.
    Brimm EO, Brantley JC, Lorenz JH, Jellinek MH (1951) Sodium and potassium tungsten bronzes. J Am Chem Soc 73:5427–5432CrossRefGoogle Scholar
  52. 52.
    Tegg L, Cuskelly D, Keast VJ (2016) The sodium tungsten bronzes as plasmonic materials: fabrication, calculation and characterisation. Materials Research Express. Under reviewGoogle Scholar
  53. 53.
    Inorganic Crystal Structure Database,
  54. 54.
    The International Centre for Diffraction Data,
  55. 55.
    Hunter BA, Howard CJ (2016) LHPM: a computer program for Rietveld analysis of x-ray and neutron powder diffraction patterns. ANSTO, NSW AustraliaGoogle Scholar
  56. 56.
    Blaha P, Schwarz K, Madsen GKH, D. Kvasnicka, Luitz. J (2001) WIEN2k, An augmented plane wave plus local orbitals program for calculating crystal properties. Technische Universitat Wien, AustriaGoogle Scholar
  57. 57.
    Perdew JP, Burke S, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  58. 58.
    Ambrosch-Draxl C, Sofo JO (2006) Linear optical properties of solids within the full-potential linearized augmented plane wave method. Comput Phys Commun 175:1–14CrossRefGoogle Scholar
  59. 59.
    Wang F, Ron Shen Y (2006) General properties of local plasmons in metal nanostructures. Phys Rev Lett 97:206806CrossRefGoogle Scholar
  60. 60.
    Bohren CF, Huffman DR (2004) Absorption and scattering of light by small particles. Wiley, WeinheimGoogle Scholar
  61. 61.
    Olman RL, Slovick B, Johnson TW, Shelton D, Oh SH, Boreman GD, Raschke MB (2012) Optical dielectric function of gold. Phys Rev B 86:235147CrossRefGoogle Scholar
  62. 62.
    Yang HU, Archangel JD, Sundheimer ML, Tucker E, Boreman GD, Raschke MB (2015) Optical dielectric function of silver. Phys Rev B 91:235137CrossRefGoogle Scholar
  63. 63.
    Kielwin M, Saiki K, Roth G, Fink J, Paasch G, Egdell RG (1995) High-energy electron-energy-loss study of sodium-tungsten bronzes. Phys Rev B 51(16):10320–10335CrossRefGoogle Scholar
  64. 64.
    Vast N, Reining L, Olevano V, Schattschneider P, Jouffrey B (2002) Local field effects in the electron energy loss spectra of rutile TiO2. Phys Rev Lett 88:037601CrossRefGoogle Scholar
  65. 65.
    Azimirad R, Akhavan O, Moshfegh AZ (2009) Simple method to synthesize NaxWO3 nanorods and nanobelts. J Phys Chem C 113:13098–13102CrossRefGoogle Scholar
  66. 66.
    Mamak M, Choi SY, Stadler U, Dolbec R, Boulos M, Petrov S (2010) Thermal plasma synthesis of tungsten bronze nanoparticles for near-infra-red absorption applications. J Mater Chem 20:9855–9857CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Mathematical and Physical SciencesUniversity of NewcastleCallaghanAustralia
  2. 2.School of EngineeringThe University of NewcastleCallaghanAustralia

Personalised recommendations