, Volume 13, Issue 2, pp 419–425 | Cite as

Properties of Surface Plasmon Polaritons Excited by Radially Polarized Sinh Gaussian Beams

  • R. Murugesan
  • N. Pasupathy
  • M. Udhayakumar
  • K. B. Rajesh
  • Z. Jaroszewicz


Properties of surface plasmon polaritons (SPPs) excited by radially polarized sinh Gaussian beams with high-numerical-aperture system is investigated theoretically based on vector diffraction theory. It is observed that by properly tuning the beam waist size (w 0 ) and beam order (m) of the incident sinh Gaussian beam, one can achieve higher confinement in axial and lateral size of the generated plasmonic focal spot. We observed that sinh Gaussian beam of larger w 0 and m results in generation of highly confined plasmonic focal spot.


Surface plasmon Radially polarized laser Sinh gaussian beam 


  1. 1.
    Rothenhäusler B, Knoll W (1988) Surface–plasmon microscopy. Nature 332:615CrossRefGoogle Scholar
  2. 2.
    Anatoly Zayats V, Igor I, Smolyaninov A, Maradudin A (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314CrossRefGoogle Scholar
  3. 3.
    Lerman GM, Yanai A, Levy U (2009) Demonstration of nano focusing by the use of plasmonic lens illuminated with radially polarized light. Nano Lett 9(5):2139–2143CrossRefGoogle Scholar
  4. 4.
    Chen W, Abeysinghe DC, Nelson RL, Zhan Q (2009) Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination. Nano Lett 9:12CrossRefGoogle Scholar
  5. 5.
    Baida FI, Belkhir A (2009) Super focusing and light confinement by surface plasmon excitation through radially polarized beam. Plasmonics 4:51–59CrossRefGoogle Scholar
  6. 6.
    Kano H, Mizuguchi S, Kawata S (1998) Excitation of surface-plasmon polaritons by a focused laser beam. J Opt Soc Am B 15(4):1381–1386CrossRefGoogle Scholar
  7. 7.
    Zhan Q (2006) Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam. Opt Lett 31(11):1726–1728CrossRefGoogle Scholar
  8. 8.
    Bouhelier A, Ignatovich F, Bruyant A, Huang C, Colas des Francs G, Weeber J-C, Dereux A, Wiederrecht GP, Novotny L (2007) Surface plasmon interference excited by tightly focused laser beams. Opt Lett 32(17):2535–2537CrossRefGoogle Scholar
  9. 9.
    Chen WB, Zhan Q (2009) Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam. Opt Lett 34(6):722–724CrossRefGoogle Scholar
  10. 10.
    Raether H (1988) Surface plasmon’s. Springer tracts in modern physics. Springer, BerlinGoogle Scholar
  11. 11.
    Man Z, Shi W, Zhang Y, Zhang C, Min C, Yuan X-C (2015) Properties of surface plasmon polaritons excited by generalized cylindrical vector beams. Appl Phys B 119:305–311CrossRefGoogle Scholar
  12. 12.
    Neil MAA, Juskaitis R, Wilson T (1997) Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt Lett 22:1905–1907CrossRefGoogle Scholar
  13. 13.
    Wang H, Shi L, Lu B, Sheppard KT, Chong C (2008) Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat Photonics 2:501–505CrossRefGoogle Scholar
  14. 14.
    Youngworth KS, Brown TG (2000) Focusing of high numerical aperture cylindrical vector beams. Opt Express 7:77–87CrossRefGoogle Scholar
  15. 15.
    Helseth LE (2001) Roles of polarization, phase and amplitude in solid immersion lens systems. Opt Commun 191:161–172CrossRefGoogle Scholar
  16. 16.
    Kozawa Y, Sato S (2007) Sharper focal spot formed by higher-order radially polarized laser beams. J Opt Soc Am A 24:1793–1798CrossRefGoogle Scholar
  17. 17.
    Vyas S, Niwa M, Kozawa Y, Sato S (2011) Diffractive properties of obstructed vector Laguerre-Gaussian beam under tight focusing condition. J Opt Soc Am A 28:1387–1394CrossRefGoogle Scholar
  18. 18.
    Kozawa Y, Sato S (2012) Focusing of higher-order radially polarized Laguerre-Gaussian beam. J Opt Soc Am A 29:2439–2443CrossRefGoogle Scholar
  19. 19.
    Huang KP, Shi K, Cao GW et al (2011) Vector-vortex Bessel-Gauss beams and their tightly focusing properties. Opt Lett 36:888–890CrossRefGoogle Scholar
  20. 20.
    Kuga T, Torii Y, Shiokawa N, Hirano T, Shimizu Y, Sasada H (1997) Novel optical trap of atoms with a doughnut beam. Phys Rev Lett 78:4713–6CrossRefGoogle Scholar
  21. 21.
    Sun QG, Zhou KY, Fang GY, Zhang GQ, Liu ZJ, Liu ST (2012) Hollow sinh-Gaussian beams and their paraxial properties. Opt Express 20:9682–9691CrossRefGoogle Scholar
  22. 22.
    Lin J, Ma Y, Jin P, Davies G, Tan JB (2013) Longitudinal polarized focusing of radially polarized sinh-Gauss beam. Opt Exp 21:13193–8CrossRefGoogle Scholar
  23. 23.
    Richards B, Wolf E (1959) Electromagnetic diffraction in optical systems II.structure of the image field in an aplanatic system. Proc R Soc A253:358–379CrossRefGoogle Scholar
  24. 24.
    Kitamura K, Sakai K, Noda S (2010) Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam. Opt Express 18:4518–4525CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • R. Murugesan
    • 1
  • N. Pasupathy
    • 1
  • M. Udhayakumar
    • 2
  • K. B. Rajesh
    • 2
  • Z. Jaroszewicz
    • 3
  1. 1.Department of ElectronicsErode Arts and Science CollegeErodeIndia
  2. 2.Department of PhysicsChikkana Government Arts CollegeTiruppurIndia
  3. 3.Department of Physical OpticsInstitute of Applied Optics, National Institute of TelecommunicationsWarsawPoland

Personalised recommendations