Plasmonics

, Volume 13, Issue 2, pp 403–412 | Cite as

Deep Subwavelength Confinement of Mid-infrared Plasmon Modes by Coupling Graphene-Coated Nanowire with a Dielectric Substrate

Article
  • 179 Downloads

Abstract

In this paper, we report the realization of highly confined mid-infrared plasmon modes by coupling freestanding graphene-coated nanowire with a dielectric substrate. It is shown that the presence of a nearby dielectric substrate not only breaks the azimuthal symmetry of the plasmon modes but also has a strong impact on the coupling and hybridization of these modes. The degree of interactions with the substrate depends on the permittivity of the substrate, the key structural parameters of the nanowire, the operation frequency and chemical potential of graphene, as well as the gap distance between the nanowire and supporting substrate. It is found that compared to freestanding case, using a high-index substrate and adjusting the gap distance can result in the following benefits: (i) an ultra-small mode area and a long propagation length can be realized simultaneously, (ii) a stronger field enhancement in the low-index gap region and improved figure of merit can be achieved, and (iii) a huge reduction in the crosstalk can be made which is crucial for the realization of high-density integrated nanophotonic devices.

Keywords

Graphene Surface plasmons Plasmonics Waveguides 

References

  1. 1.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  2. 2.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonicnanosensors. Nat Mater 7(6):442–453CrossRefGoogle Scholar
  3. 3.
    Woolf D, Loncar M, Capasso F (2009) The forces from coupled surface plasmon polaritons in planar waveguides. Opt Express 17(22):19996–20011CrossRefGoogle Scholar
  4. 4.
    Kang M, Park J, Lee I, Lee B (2009) Floating dielectric slab optical interconnection between metal-dielectric interface surface plasmon polariton waveguides. Opt Express 17(2):676–687CrossRefGoogle Scholar
  5. 5.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213CrossRefGoogle Scholar
  6. 6.
    Bozhevolnyi SI, Søndergaard T (2007) General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. Opt Express 15(17):10869–10877CrossRefGoogle Scholar
  7. 7.
    Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photonics 6(11):737–748CrossRefGoogle Scholar
  8. 8.
    West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photonics Rev 4(6):795–808CrossRefGoogle Scholar
  9. 9.
    Berini P (2009) Long-range surface plasmon polaritons. Adv Opt Photon 1(3):484–588CrossRefGoogle Scholar
  10. 10.
    Dionne JA, Sweatlock LA, Atwater HA, Polman A (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73:035407CrossRefGoogle Scholar
  11. 11.
    Zhang S, Wei H, Bao K, Håkanson U, Halas N, Nordlander P, Xu H (2011) Chiral surface plasmon polaritons on metallic nanowires. Phys Rev Lett 107:096801CrossRefGoogle Scholar
  12. 12.
    Li Q, Qiu M (2013) Plasmonic wave propagation in silver nanowires: guiding modes or not? Opt Express 21(7):8587–8595CrossRefGoogle Scholar
  13. 13.
    Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500CrossRefGoogle Scholar
  14. 14.
    Wang Y, Ma Y, Guo X, Tong L (2012) Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates. Opt Express 20(17):19006–19015CrossRefGoogle Scholar
  15. 15.
    Alam MZ, Aitchison JS, Mojahedi M (2014) A marriage of convenience: hybridization of surface plasmon and dielectric waveguide modes. Laser Photonics Rev 8:394–408CrossRefGoogle Scholar
  16. 16.
    Bian Y, Gong Q (2015) Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale. Nanoscale 7:4415–4422CrossRefGoogle Scholar
  17. 17.
    Jablan M, Buljan H, Soljačić M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80(24):245435CrossRefGoogle Scholar
  18. 18.
    Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332(6035):1291–1294CrossRefGoogle Scholar
  19. 19.
    Koppens FHL, Chang DE, García de Abajo FJ (2011) Graphene plasmonics: a platform for strong light matter interactions. Nano Lett 11(8):3370–3377CrossRefGoogle Scholar
  20. 20.
    Lamata IS, Alonso-González P, Hillenbrand R, Nikitin AY (2015) Plasmons in cylindrical 2D materials as a platform for nanophotonic circuits. ACS Photon 2(2):280–286CrossRefGoogle Scholar
  21. 21.
    Nikitin AY, Guinea F, Garcia-Vidal FJ, Martin Moreno L (2011) Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys Rev B 84(16):161407CrossRefGoogle Scholar
  22. 22.
    He S, Zhang X, He Y (2013) Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI. Opt Express 21(25):30664–30673CrossRefGoogle Scholar
  23. 23.
    Hajati M, Hajati Y (2016) Investigation of plasmonic properties of graphene multilayer nano-ribbon waveguides. Appl Opt 55(8):1878–1884CrossRefGoogle Scholar
  24. 24.
    Hajati M, Hajati Y (2016) Dynamic tuning of mid-infrared plasmons in graphene–buffer–SiO2–Si nanostructures. J Opt Soc Am B 33(6):1303–1310CrossRefGoogle Scholar
  25. 25.
    Yan HG, Low T, Zhu WJ, Wu YQ, Freitag M, Li XS, Guinea F, Avouris P, Xia FN (2013) Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photonics 7(5):394–399CrossRefGoogle Scholar
  26. 26.
    Gao Y, Ren G, Zhu B, Liu H, Lian Y, Jian S (2014) Analytical model for plasmon modes in graphene-coated nanowire. Opt Express 22(20):24322–24331CrossRefGoogle Scholar
  27. 27.
    Liu J, Zhai X, Wang L, Li H, Xie F, Xia S, Shang X, Luo X (2016) Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range. Opt Express 24(5):5376–5386CrossRefGoogle Scholar
  28. 28.
    Dong CH, Ren XF, Yang R, Duan JY, Guan JG, Guo GC, Guo GP (2009) Coupling of light from an optical fiber taper into silver nanowires. Appl Phys Lett 95(22):221109CrossRefGoogle Scholar
  29. 29.
    Knight MW, Wu Y, Lassiter JB, Nordlander P, Halas NJ (2009) Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticles. Nano Lett 9(5):2188–2192CrossRefGoogle Scholar
  30. 30.
    Zou CL, Sun FW, Xiao YF, Dong CH, Chen XD, Cui JM, Gong Q, Han ZF, Guo GC (2010) Plasmon modes of silver nanowire on a silica substrate. Appl Phys Lett 97(18):183102CrossRefGoogle Scholar
  31. 31.
    Wang B, Zhang X, Garcia-Vidal FJ, Yuan X, Teng J (2012) Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays. Phys Rev Lett 109:073901CrossRefGoogle Scholar
  32. 32.
    Thongrattanasiri S, Manjavacas A, García de Abajo FJ (2012) Quantum finite-size effects in graphene plasmons. ACS Nano 6(2):1766–1775CrossRefGoogle Scholar
  33. 33.
    Maier SA (2007) Plasmonics: fundamentals and aplications. Springer, New YorkGoogle Scholar
  34. 34.
    Emani NK, Chung TF, Ni XJ, Kildishev AV, Chen YP, Boltasseva A (2012) Electrically tunable damping of plasmonic resonances with graphene. Nano Lett 12(10):5202–5206CrossRefGoogle Scholar
  35. 35.
    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X (2011) A graphene-based broadband optical modulator. Nature 474:64–67CrossRefGoogle Scholar
  36. 36.
    Efetov DK, Kim P (2010) Controlling electron–phonon interactions in graphene at ultrahigh carrier densities. Phys Rev Lett 105:256805CrossRefGoogle Scholar
  37. 37.
    Huang WP (1994) Coupled-mode theory for optical waveguides: an overview. J Opt Soc Am A 11(3):963–983CrossRefGoogle Scholar
  38. 38.
    Kuykendall T, Ulrich P, Aloni S, Yang P (2007) Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat Mater 6:951–956CrossRefGoogle Scholar
  39. 39.
    Sood DK, Sekhar PK, Bhansali S (2006) Ion implantation based selective synthesis of silica nanowires on silicon wafers. App Phys Lett 88(14):143110CrossRefGoogle Scholar
  40. 40.
    Sekhar PK, Sambandam SN, Sood DK, Bhansali S (2007) Selective growth of silica nanowires in silicon catalysed by Pt thin film. Nanotechnology 17(18):4606CrossRefGoogle Scholar
  41. 41.
    Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H, Liu W, Bao J, Shen YR (2014) Ultrafast all-optical graphene modulator. Nano Lett 14(2):955–959CrossRefGoogle Scholar
  42. 42.
    He X, Zhang X, Zhang H, Xu M (2014) Graphene covered on microfiber exhibiting polarization and polarization-dependent saturable absorption. IEEE J Sel Top Quantum Electron 20(1):4500107Google Scholar
  43. 43.
    Wu Y, Yao B, Zhang A, Rao Y, Wang Z, Cheng Y, Gong Y, Zhang W, Chen Y, Chiang KS (2014) Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing. Opt Lett 39(5):1235–1237CrossRefGoogle Scholar
  44. 44.
    Huang Z, Zhong P, Wang C, Zhang X, Zhang C (2013) Silicon nanowires/reduced graphene oxide composites for enhanced photoelectrochemical properties. ACS Appl Mater Interfaces 5(6):1961–1966CrossRefGoogle Scholar
  45. 45.
    Chen B, Meng C, Yang Z, Li W, Lin S, Gu T, Guo X, Wang D, Yu S, Wong CW, Tong L (2014) Graphene coated ZnO nanowire optical waveguides. Opt Express 22(20):24276–24285CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Ministry of EducationKhuzestan ProvinceIran
  2. 2.Department of Physics, Faculty of ScienceShahid Chamran University of AhvazAhvazIran

Personalised recommendations