, Volume 13, Issue 2, pp 385–392 | Cite as

Influence of Anisotropy on Optical Bistability in Plasmonic Nanoparticles with Cylindrical Symmetry

  • Nader Daneshfar
  • Tayebeh Naseri
  • Hamidreza Foroughi


In this paper, the effect of radial anisotropy on optical bistability in the cylindrical nanoshells is theoretically investigated within the quasi-static approximation. We consider two cases: when the shell is anisotropic and the core is nonlinear metal and when the core is anisotropic and the shell is a nonlinear metal. The dependence of optical bistability on the size of the nonlinear/anisotropic shell or core, the embedding medium, the anisotropy parameter, and the type of noble metals as candidates for plasmonics is studied and demonstrated. We show that by changing the type of the plasmonic metal, the switching threshold field changes can be used to design nanoparticle-based all-optical sensors. It is also shown that significant optical bistability and all-optical switching behavior can be obtained in the cylindrical nanoshells due to nonlinearity enhancement via the plasmonic structure.


Optical bistability Plasmonic nanoparticle Plasmonic nanoshell Anisotropy 


  1. 1.
    Fan X, Shen Z, Lukyanchuk B (2010) Huge light scattering from active anisotropic spherical particles. Opt Express 18:24868–24880CrossRefGoogle Scholar
  2. 2.
    Gao L, Gu L, Li Z (2003) Optical bistability and tristability in nonlinear metal-dielectric composite media of nonspherical particles. Phys Rev E 68(066601)Google Scholar
  3. 3.
    Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photonics 6:737–748CrossRefGoogle Scholar
  4. 4.
    Hoang TT, Le KQ, Ngo QM (2015) Surface plasmon-assisted optical switching/bistability at telecommunication wavelengths in nonlinear dielectric gratings. Curr Appl Phys 15:987– 992CrossRefGoogle Scholar
  5. 5.
    Ishimaru A (1991) Electromagnetic wave propagation radiation and scattering. Prentice-Hall, New JerseyGoogle Scholar
  6. 6.
    Gao L, Huang JP, Yu KW (2003) Giant enhancement of optical nonlinearity in mixtures of graded particles with dielectric anisotropy. Eur Phys J B 36:475–484CrossRefGoogle Scholar
  7. 7.
    Qiu C, Gao L, Joannopoulos JD (2010) Light scattering from anisotropic particles: propagation, localization, and nonlinearity. Laser Photonics Rev 4:268–282CrossRefGoogle Scholar
  8. 8.
    Yuen KP, Law MF, Yu KW, Sheng P (1997) Optical nonlinearity enhancement via geometric anisotropy. Phys Rev E 56:R1322CrossRefGoogle Scholar
  9. 9.
    Li Q (ed) (2015) Anisotropic nanomaterials: preparation, properties and applications. Springer International Publishing, SwitzerlandCrossRefGoogle Scholar
  10. 10.
    Gao L, Yu XP (2005) Effects of a coating of spherically anisotropic material in core-shell particles. Phys Lett A 335:457–463CrossRefGoogle Scholar
  11. 11.
    Liu DH, Xu C, Hui PM (2008) Effects of a coating of spherically anisotropic material in core-shell particles. Appl Phys Lett 92(181901)Google Scholar
  12. 12.
    Wu DJ, Liu XJ (2009) Influence of spherically anisotropic core on the optical properties of gold nanoshell. Appl Phys A 94:537–541CrossRefGoogle Scholar
  13. 13.
    Yin YD, Gao L, Qiu CW (2011) Electromagnetic theory of tunable SERS manipulated with spherical anisotropy in coated nanoparticles. J Phys Chem C 115:8893–8899CrossRefGoogle Scholar
  14. 14.
    Shu-Min J, Da-Jian W, Ying C, Xiao-Jun L (2012) Manipulated localized surface plasmon resonances in silver nanoshells coated with a spherical anisotropic layer. Chin Phys B 21(127806)Google Scholar
  15. 15.
    Razumova MA, Dmitruk IM (2013) Splitting of plasmon frequency in spherical metal nanoparticles in anisotropic medium. Plasmonics 8(1699):1706Google Scholar
  16. 16.
    Della Sala F, D’Agostino S, (eds) (2013) Handbook of molecular plasmonics. CRC Press, Boca RatonGoogle Scholar
  17. 17.
    Daneshfar N, Foroughi HR (2016) Optical bistability in plasmonic nanoparticles: effect of size, shape and embedding medium. Phys E 83:268–274CrossRefGoogle Scholar
  18. 18.
    Zhu J, Liu H, Huang LQ (2009) Wall thickness dependent double optical bistability in gold nanotube: a physical mechanism based on local field enhancement. J App Phys 105 (114319)Google Scholar
  19. 19.
    Lide DR, (ed.) (2004) CRC handbook of chemistry and physics. CRC Press, Boca Raton FLGoogle Scholar
  20. 20.
    Stoller P, Jacobsen V, Sandoghdar V (2006) Measurement of the complex dielectric constant of a single gold nanoparticle. Opt Lett 31:2474–2476CrossRefGoogle Scholar
  21. 21.
    Polo Jr JA, Mackay TG, Lakhtakia A (2013) Electromagnetic surface waves: a modern perspective. Elsevier, WalthamGoogle Scholar
  22. 22.
    Boyd RW (2008) Nonlinear optics, 3rd edition. Academic Press, San DiegoGoogle Scholar
  23. 23.
    Argyropoulos C, Chen PY, Monticone F, D’Aguanno G, Alu A (2010) Nonlinear plasmonic cloaks to realize giant all-optical scattering switching. Phys Rev Lett 108(263905)Google Scholar
  24. 24.
    Chen HL, Gao DL, Gao L (2016) Effective nonlinear optical properties and optical bistability in composite media containing spherical particles with different sizes. Opt Express 24:5334–5345CrossRefGoogle Scholar
  25. 25.
    Ma P, Gao D, Ni Y (2016) Enhancement of optical nonlinearity by core-shell bimetallic nanostructures. Plasmonics. doi: 10.1007/s11468-015-0036-x
  26. 26.
    West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photonics Rev 4:795–808CrossRefGoogle Scholar
  27. 27.
    Chen H, Zhang Y, Zhang B, Gao L (2016) Optical bistability in a nonlinear shell-coated metallic nanoparticle. Sci Rep 6 :21741CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Nader Daneshfar
    • 1
  • Tayebeh Naseri
    • 1
  • Hamidreza Foroughi
    • 1
  1. 1.Department of PhysicsRazi UniversityKermanshahIran

Personalised recommendations