, Volume 13, Issue 2, pp 373–383 | Cite as

In-Plane and Out-of-Plane Plasmons in Random Silver Nanoisland Films

  • Mahima Arya
  • Mukesh Ranjan
  • Mukul Bhatnagar
  • Rabindra Nath
  • Anirban Mitra


Effective permittivity of closely spaced random nanoparticles supported by a substrate has been calculated using a modified Yamaguchi’s model (MYM) which involves the exact expression of a local field outside a metal nanoparticle (NP) along with the effective-medium approach. Pulsed laser deposition has been used to deposit silver nanoisland films on SiO2 substrates. In-plane and out-of-plane plasmonic responses have been calculated using MYM for various filling fractions and the results are compared with those obtained from spectroscopic ellipsometry. Distinct features of out-of-plane and in-plane plasmons are observed with an spectroscopic ellipsometer and their behavior is supported by the present theoretical investigation. The comparison of the effective dielectric constants of the films obtained from ellipsometry data with those calculated using MYM shows uniaxial optical anisotropy in our case. The calculated morphological parameters (filling fraction, aspect ratio, and average particle size) using MYM are also found to be consistent with those obtained from FESEM images.


Plasmonics Pulsed laser deposition Ellipsometry Analytical modeling 



Financial support from the Human Resource Development (government of India) is gratefully acknowledged.


  1. 1.
    Yu FC, Aimin, Liang Z, Cho J (2003) Nanostructured electrochemical sensor based on dense gold nanoparticle films. Nano Lett 3:1203–1207CrossRefGoogle Scholar
  2. 2.
    Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85:743–750CrossRefGoogle Scholar
  3. 3.
    P. Z. El-Khoury, E. Khon, Y. Gong, A. G. Joly, P. Abellan, J. E. Evans, N. D. Browning, D. Hu, M. Zamkov, and W. P. Hess (2014) Electric field enhancement in a self-assembled 2D array of silver nanospheres. J Chem Phys 141Google Scholar
  4. 4.
    K. R. Catchpole and A. Polman (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93Google Scholar
  5. 5.
    Vece MD, Kuang Y, Van Duren SNF, Charry JM, Van Dijk L, Schropp REI (2012) Plasmonic nano-antenna a-Si: H solar cell. Opt Express 20:97–105Google Scholar
  6. 6.
    Kawata S (2013) Plasmonics for nanoimaging and nanospectroscopy. Appl Spectrosc 67:117–125CrossRefGoogle Scholar
  7. 7.
    T. Gong and J. N. Munday (2015) Materials for hot carrier plasmonics. Opt Mater Express 5 2501Google Scholar
  8. 8.
    Zhao L, Zhao LL, Kelly KL, Kelly KL, Schatz GC, Schatz GC (2003) The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J Phys Chem B 107:7343–7350CrossRefGoogle Scholar
  9. 9.
    Gray S, Kupka T (2003) Propagation of light in metallic nanowire arrays: finite-difference time-domain studies of silver cylinders. Phys Rev B 68:1–11CrossRefGoogle Scholar
  10. 10.
    D. Chen, J. Zhou, M. Rippa, and L. Petti (2015) Structure-dependent localized surface plasmon resonance characteristics and surface enhanced Raman scattering performances of quasi-periodic nanoarrays: measurements and analysis. J Appl Phys 118Google Scholar
  11. 11.
    Li J, Gu Y, Gong Q (2010) Tuning of narrow geometric resonances in Ag/Au binary nanoparticle arrays. Opt Express 18:17684–17698CrossRefGoogle Scholar
  12. 12.
    Zou S, Janel N, Schatz GC (2004) Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J Chem Phys 120:10871–10875CrossRefGoogle Scholar
  13. 13.
    Haynes CL, Haynes CL, McFarland AD, Zhao L, McFarland AD, Zhao L, Van Duyne RP, Van Duyne RP, Schatz GC, Schatz GC, Gunnarsson L, Prikulis J, Gunnarsson L, Prikulis J, Kasemo B, Kasemo B, Käll M, Käll M (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107:7337–7342CrossRefGoogle Scholar
  14. 14.
    Jain PK, Huang W, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7:2080–2088CrossRefGoogle Scholar
  15. 15.
    Stout B, Devilez A, Rolly B, Bonod N (2011) Multipole methods for nanoantennas design: applications to Yagi-Uda configurations. Josa B 28:1213–1223CrossRefGoogle Scholar
  16. 16.
    Yamaguchi T, Yoshida S, Kinbara A (1973) Anomalous optical absorption of aggregated silver films. Thin Solid Films 18:63–70CrossRefGoogle Scholar
  17. 17.
    Fedotov VA, Emel’yanov VI, MacDonald KF, Zheludev NI (2004) Optical properties of closely packed nanoparticle films: spheroids and nanoshells. J Opt A Pure Appl Opt 6:155–160CrossRefGoogle Scholar
  18. 18.
    Pinchuk AO, Schatz GC (2008) Nanoparticle optical properties: far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles. Mater Sci Eng B Solid-State Mater Adv Technol 149:251–258CrossRefGoogle Scholar
  19. 19.
    Maier S, Brongersma M, Kik P, Atwater H (2002) Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Phys Rev B 65:1–4Google Scholar
  20. 20.
    Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3:1087–1090CrossRefGoogle Scholar
  21. 21.
    Narayanan R, El-Sayed MA (2004) Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett 4:1343–1348CrossRefGoogle Scholar
  22. 22.
    Hicks EM, Zou S, Schatz GC, Spears KG, Van Duyne RP, Gunnarsson L, Rindzevicius T, Kasemo B, Kall M (2005) Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett 5:1065–1070CrossRefGoogle Scholar
  23. 23.
    Protopapa ML (2010) Simulation of optical properties of layered metallic nanoparticles embedded inside dielectric matrices: interference method or Maxwell Garnett effective-medium theory? Appl Opt 49:3014–3024CrossRefGoogle Scholar
  24. 24.
    Toudert J, Simonot L, Camelio S, Babonneau D (2012) Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal nanoparticles embedded in a homogeneous dielectric medium: surface plasmon resonances. Phys Rev B - Condens Matter Mater Phys 86:1–15CrossRefGoogle Scholar
  25. 25.
    S. Horikoshi and T. Kato (2015) Theoretical study of the interparticle interaction of nanoparticles randomly dispersed on a substrate. J Appl Phys 117Google Scholar
  26. 26.
    Muskens OL, Giannini V, Sánchez-Gil JA, Gómez Rivas J (2007) Optical scattering resonances of single and coupled dimer plasmonic nanoantennas. Opt Express 15:17736–17746CrossRefGoogle Scholar
  27. 27.
    Meng X, Fujita K, Zong Y, Murai S, Tanaka K (2008) Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles. Appl Phys Lett 92:2006–2009Google Scholar
  28. 28.
    Verre R, Fleischer K, Smith C, McAlinden N, McGilp J, Shvets I (2011) Probing the out-of-plane optical response of plasmonic nanostructures using spectroscopic ellipsometry. Phys Rev B 84:1–6CrossRefGoogle Scholar
  29. 29.
    Battie Y, En Naciri A, Chamorro W, Horwat D (2014) Generalized effective medium theory to extract the optical properties of two-dimensional nonspherical metallic nanoparticle layers. J Phys Chem C 118:4899–4905CrossRefGoogle Scholar
  30. 30.
    Bader G, Ashrit PV, Truong VV (1998) Transmission and reflection ellipsometry of thin films and multilayer systems. Appl Opt 37:1146–1151CrossRefGoogle Scholar
  31. 31.
    M. Ranjan, M. Bhatnagar, and S. Mukherjee (2015) Localized surface plasmon resonance anisotropy in template aligned silver nanoparticles: a case of biaxial metal optics. J Appl Phys 117Google Scholar
  32. 32.
    Oates TWH, Ranjan M, Facsko S, Arwin H (2011) Highly anisotropic effective dielectric functions of silver nanoparticle arrays RID C-7150-2011 RID B-7312-2009. Opt Express 19:2014–2028CrossRefGoogle Scholar
  33. 33.
    N. I. Grigorchuk (2012) Resonance plasmon linewidth oscillations in spheroidal metallic nanoparticle embedded in a dielectric matrix. J Appl Phys 112Google Scholar
  34. 34.
    Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806–3819CrossRefGoogle Scholar
  35. 35.
    U. Kreibig and M. Vollmer (1995) Optical properties of metal clustersGoogle Scholar
  36. 36.
    Loncaric M, Sancho-Parramon J, Zorc H (2011) Optical properties of gold island films—a spectroscopic ellipsometry study. Thin Solid Films 519:2946–2950CrossRefGoogle Scholar
  37. 37.
    Beyene HT, Weber JW, Verheijen MA, van de Sanden MCM, Creatore M (2012) Real time in situ spectroscopic ellipsometry of the growth and plasmonic properties of au nanoparticles on SiO2. Nano Res 5:513–520CrossRefGoogle Scholar
  38. 38.
    Verma S, Tirumala Rao B, Rai S, Ganesan V, Kukreja LM (2012) Influence of process parameters on surface plasmon resonance characteristics of densely packed gold nanoparticle films grown by pulsed laser deposition. Appl Surf Sci 258:4898–4905CrossRefGoogle Scholar
  39. 39.
    Venugopal N, Mitra A (2013) Optical transparency of ZnO thin film using localized surface plasmons of Ag nanoislands. Opt Mater (Amst) 35:1467–1476CrossRefGoogle Scholar
  40. 40.
    Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366CrossRefGoogle Scholar
  41. 41.
    Huang K, Pan W, Zhu JF, Li JC, Gao N, Liu C, Ji L, Yu ET, Kang JY (2015) Asymmetric light reflectance from metal nanoparticle arrays on dielectric surfaces. Sci Rep 5:18331CrossRefGoogle Scholar
  42. 42.
    Yamaguchi T, Yoshida S, Kinbara A (1974) Effect of retarded dipole-dipole interactions between island particles on the optical plasma-resonance absorption of a silver-island film. J Opt Soc Am 64:1563CrossRefGoogle Scholar
  43. 43.
    M. B. Ross, C. A. Mirkin, and G. C. Schatz (2016) Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures. J Phys Chem C acs.jpcc.5b10800Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mahima Arya
    • 1
  • Mukesh Ranjan
    • 2
  • Mukul Bhatnagar
    • 2
  • Rabindra Nath
    • 1
  • Anirban Mitra
    • 1
  1. 1.Department of PhysicsIndian Institute of TechnologyRoorkeeIndia
  2. 2.FCIPT, Institute of Plasma ResearchGandhinagarIndia

Personalised recommendations