Skip to main content

Optical Absorption Modeling of Plasmonic Organic Solar Cells Embedding Silica-Coated Silver Nanospheres

Abstract

We numerically study plasmonic solar cells in which a square periodic array of core–shell Ag@SiO2 nanospheres (NSs) are placed on top of the indium tin oxide (ITO) layer using a 3D finite-difference time-domain (FDTD) method. We investigate the influence of various parameters such as the periodicity of the array, the Ag core diameter, the active layer thickness, the shell thickness, and the refractive index of the shell materials on the optical performance of the organic solar cells (OSC). Our results show that the optimal periodicity of the array of NSs is dependent on the size of Ag core NSs in order to maximize optical absorption in the active layer. A very thin active layer (<70 nm) and an ultrathin (<5 nm) SiO2 shell are needed in order to obtain the highest optical absorption enhancement. Strong electric field localization is observed around the plasmonic core–shell nanoparticles as a result of localized surface plasmon resonance (LSPR) excited by Ag NSs with and without silica shell. Embedding 50 nm Ag NSs with 1-nm-thick SiO2 shell thickness on top of ITO leads to an enhanced intrinsic optical absorption in a 40-nm-thick poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) active layer by 24.7% relative to that without the NSs. The use of 1-nm-thick ZnO shell instead of SiO2 leads to an enhanced intrinsic absorption in a 40-nm-thick P3HT:PCBM active layer by 27%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Stratakis E, Kymakis E (2013) Nanoparticle-based plasmonic organic photovoltaic devices. Mater Today 16:133–146

    Article  CAS  Google Scholar 

  2. Kozanoglu D, Apaydin DH, Cirpan A, Esenturk EN (2013) Power conversion efficiency enhancement of organic solar cells by addition of gold nanostars, nanorods, and nanospheres. Org Electron 14:1720–1727

    Article  CAS  Google Scholar 

  3. Duche D, Torchio P, Escoubas L, Monestier F, Simon J-J, Flory F, Mathian G (2009) Improving light absorption in organic solar cells by plasmonic contribution. Sol Energy Mater Sol Cells 93:1377–1382

    Article  CAS  Google Scholar 

  4. Fung DDS, Qiao L, Choy WCH, Wang C, Sha WEI, Xie F, He S (2011) Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer. J Mater Chem 21:16349–16356

    Article  CAS  Google Scholar 

  5. Vedraine S, Torchio P, Duché D, Flory F, Simon JJ, Le Rouzo J, Escoubas L (2011) Intrinsic absorption of plasmonic structures for organic solar cells. Sol Energy Mater Sol Cells 95:S57–S64

    Article  CAS  Google Scholar 

  6. Kim C-H, Cha S-H, Kim SC, Song M, Lee J, Shin WS, Moon S-J, Bahng JH, Kotov NA, Jin S-H (2011) Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications. ACS Nano 5:3319–3325

    Article  CAS  Google Scholar 

  7. Wu C, Zhou X, Wei J (2015) Localized surface plasmon resonance of silver nanotriangles synthesized by a versatile solution reaction. Nanoscale Res Lett 10:354–359

    Article  Google Scholar 

  8. Liu F, Xie W, Xu Q, Liu Y, Cui K, Feng X, Zhang W, Huang Y (2013) Plasmonic enhanced optical absorption in organic solar cells with metallic nanoparticles. IEEE Photonics Journal 5:8400509

    Article  Google Scholar 

  9. Shen W, Tang J, Yang R, Cong H, Bao X, Wang Y, Wang X, Huang Z, Liu J, Huang L, Jiao J, Xu Q, Chen W, Belfior LA (2014) Enhanced efficiency of polymer solar cells by incorporated Ag–SiO2 core–shell nanoparticles in the active layer. RSC Adv 4:4379–4386

    Article  CAS  Google Scholar 

  10. Wang BY, Yoo TH, Lim JW, Sang BI, Lim DS, Choi WK, Hwang do K, Oh YJ (2015) Enhanced light scattering and trapping effect of Ag nanowire mesh electrode for high efficient flexible organic solar cell. Small 11:1905–1911

    Article  CAS  Google Scholar 

  11. Choi H, Lee JP, Ko SJ, Jung JW, Park H, Yoo S, Park O, Jeong J-R, Park S, Kim JY (2013) Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells. Nano Lett 13:2204–2208

    Article  CAS  Google Scholar 

  12. Jang LW, Park H, Lee S-H, Polyakov AY, Khan R, Yang JK, Lee IH (2015) Device performance of inverted polymer solar cells with AgSiO2 nanoparticles in active layer. Opt Express 23:A211–A218

    Article  CAS  Google Scholar 

  13. Janković V, Yang YM, You JB, Dou LT, Liu YS, Cheung P, Chang JP, Yang Y (2013) Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics. ACS Nano 7:3815–3822

    Article  Google Scholar 

  14. Lee J-Y, Peumans P (2010) The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer. Opt Express 18:10078–10087

    Article  CAS  Google Scholar 

  15. Kim T, Kang H, Jeong S, Kang DJ, Lee C, Lee C-H, Seo M-K, Lee J-Y, Kim BJ (2014) Au@polymer core–shell nanoparticles for simultaneously enhancing efficiency and ambient stability of organic optoelectronic devices. ACS Appl Mater Interfaces 6:16956–16965

  16. Brown MD, Suteewong T, Kumar RS, D’Innocenzo V, Petrozza A, Lee MM, Wiesner U, and Snaith HJ (2011) Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. Nano Lett 11:438–445

  17. West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photonics Rev 4:795–808

    Article  CAS  Google Scholar 

  18. Hao Y, Song J, Yang F, Hao Y, Sun Q, Guo J, Cui Y, Wang H, Zhu F (2015) Improved performance of organic solar cells by incorporating silica-coated silver nanoparticles in the buffer layer. J Mater Chem C 3:1082–1090

    Article  CAS  Google Scholar 

  19. Chen B, Zhang W, Zhou X, Huang X, Zhao X, Wang H, Liu M, Lu Y, Yang S (2013) Surface plasmon enhancement of polymer solar cells by penetrating Au/SiO2 core/shell nanoparticles into all organic layers. Nano Energy 2:906–915

    Article  CAS  Google Scholar 

  20. Gangishetty MK, Lee KE, Scott RWJ, Kelly TL (2013) Plasmonic enhancement of dye sensitized solar cell in the red-to-near-infrared region using triangular core-shell Ag@SiO2 nanoparticles. ACS Appl Mater Interfaces 5:11044–11051

    Article  CAS  Google Scholar 

  21. Du P, Jing P, Li D, Cao Y, Liu Z, Sun Z (2015) Plasmonic Ag@oxide nanoprisms for enhanced performance of organic solar cells. Small 11:2454–2462

    Article  CAS  Google Scholar 

  22. Xu X, Kyaw KA, Peng B, Xiong Q, Demir HV, Wang Y, Wong TKS, Sun XW (2015) Influence of gold-silica nanoparticles on the performance of small-molecule bulk heterojunction solar cells. Org Electron 22:20–28

    Article  CAS  Google Scholar 

  23. Palik ED (1998) Handbook of optical constants of solids. Academic Press, New York

    Google Scholar 

  24. Monestier F, Simon J-J, Torchio P, Escoubas L, Flory F, Bailly S, de Bettignies R, Guillerez S, Defranoux C (2007) Modeling the short circuit current density of polymer solar cells based on P3HT:PCBM blend. Sol Energy Mater Sol Cells 91:405–410

    Article  CAS  Google Scholar 

  25. Bohren C F, Huffman D R, (1983) Absorption and scattering of light by small particles, Wiley-Interscience

  26. Zhang R, Zhou Y, Peng L, Li X, Chen S, Feng X, Guan Y, Huang W (2016) Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures. Scientific Reports 6:25036

    Article  CAS  Google Scholar 

  27. Shen H, Bienstman P, Maes B (2009) Plasmonic absorption enhancement in organic solar cells with thin active layers. J Appl Phys 106:073109

    Article  Google Scholar 

  28. Jiang W, Salvador M, Dunham S (2013) Combined three-dimensional electromagnetic and device modeling of surface plasmon-enhanced organic solar cells incorporating low aspect ratio silver nanoprisms. Appl Phys Lett 103:183303

    Article  Google Scholar 

  29. Raman A, Yu Z, Fan S (2011) Dielectric nanostructures for broadband light trapping in organic solar cells. Opt Express 19:19015–19026

    Article  CAS  Google Scholar 

  30. Li Q, Yoon WJ, Ju H (2014) Optimization of an organic photovoltaic device via modulation of thickness of photoactive and optical spacer layers. Nanoscale Res Lett 9:460

    Article  Google Scholar 

  31. Kim I, Jeong DS, Lee TS, Lee WS, Lee K-S (2012) Plasmonic absorption enhancement in organic solar cells by nano disks in a buffer layer. J Appl Phys 111:103121

    Article  Google Scholar 

  32. Ren W, Zhang G, Wu Y, Ding H, Shen Q, Zhang K, Li J, Pan N, Wang X (2011) Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell. Opt Express 19:26536–26550

    Article  CAS  Google Scholar 

  33. Mahmoud AY, Zhang J, Ma D, Izquierdo R, Truong VV (2013) Thickness dependent enhanced efficiency of polymer solar cells with gold nanorods embedded in the photoactive layer. Sol Energy Mater Sol Cells 116:1–8

    Article  CAS  Google Scholar 

  34. Sygletou M, Kakavelakis G, Paci B, Generosi A, Kymakis E, Stratakis E (2015) Enhanced stability of aluminum nanoparticle-doped organic solar cells. ACS Appl Mater Interfaces 7:17756–17764

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the IDB Merit Scholarship Programme for High Technology (MSP) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Torchio.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

N’Konou, K., Peres, L. & Torchio, P. Optical Absorption Modeling of Plasmonic Organic Solar Cells Embedding Silica-Coated Silver Nanospheres. Plasmonics 13, 297–303 (2018). https://doi.org/10.1007/s11468-017-0514-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0514-4

Keywords

  • Core–shell nanoparticle
  • 3D FDTD modeling
  • Plasmon effect
  • Organic solar cell