Nanoscale Dielectric Function of Fe, Pt, Ti, Ta, Al, and V: Application to Characterization of Al Nanoparticles Synthesized by Fs Laser Ablation


Development and applications of new nanomaterials and nanocomposites that include metal nanoparticles have received much attention in the last years. However, there are relatively few studies concerning basic physical characteristics of the dielectric function at the nanoscale, which is needed for predicting their optical and plasmonic response. The size-dependent complex dielectric function of metal Fe, Pt, Ti, Ta, Al, and V nanoparticles (NPs) is calculated for the first time for an extended wavelength range from UV to FIR, based on experimental bulk complex refractive index measurements in the mentioned range at room temperature. Calculation is based on a “top-down” approach, based on a stepwise modification of the Drude model. Bulk plasma frequency (ω p) and damping constant (γ free) in this model are determined using a method that improves the relative uncertainties in their values and provide an insight about the wavelength range over which the metal may be considered Drude like. Validation of ω p and γ free values is demonstrated by the improved accuracy with which the experimental bulk dielectric function is reproduced. For nanometric and subnanometric scales, dielectric function is made size dependent considering size-corrective terms for free and bound electron contributions to the bulk dielectric function. These results are applied to analyze the synthesis of Al NP suspensions using a 120-fs pulse laser to ablate an Al solid target in n-heptane and water. The presence of Al, Al-Al2O3, and air-Al core-shell structures is also reported for the first time in these type of colloids. Analysis of the structure, configuration, sizing, and relative abundance was carried out using optical extinction spectroscopy (OES). Sizing results are compared with those provided by atomic force microscopy (AFM) studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Asharani PV, Sethu S, Vadukumpully S, Zhong S, Lim CT, Prakash Hande M, Valiyaveetti S (2010) Investigations on the structural damage in human erythrocytes exposed to silver, gold, and platinum nanoparticles. Adv Funct Mater 20:1233–1242

    CAS  Article  Google Scholar 

  2. 2.

    Takamiya M, Miyamoto Y, Yamashita T, Deguchi K, Ohta Y, Ikeda Y, Matsuura T, Abe K (2011) Neurological and pathological improvements of cerebral infarction in mice with platinum nanoparticles. J Neurosci Res 89:1125–1133

    CAS  Article  Google Scholar 

  3. 3.

    Zhang Y, Yuan R, Chai Y, Wang J, Zhong H (2012) Amperometric biosensor for nitrite and hydrogen peroxide based on hemoglobin immobilized on gold nanoparticles/polythionine/platinum nanoparticles modified glassy carbon electrode. J Chem Technol Biotechnol 87:570–574

    CAS  Article  Google Scholar 

  4. 4.

    Zhao K, Zhuang S, Chang Z, Songm H, Dai L, He P, Fang Y (2007) Amperometric glucose biosensor based on platinum nanoparticles combined aligned carbon nanotubes electrode. Electroanalysis 19:1069–1074

    CAS  Article  Google Scholar 

  5. 5.

    Wang Q, Yun Y (2013) Nanoenzymatic sensor for hydrogen peroxide based on electrodeposition on silver nanoparticles on poly(ionic liquid) stabilized grapheme sheets. Microchim Acta 180:261–268

    CAS  Article  Google Scholar 

  6. 6.

    Elder A, Yang H, Gwiazda R, Teng X, Thurston S, He H, Oberdörster G (2007) Testing nanomaterials of unknown toxicity: an example based on platinum nanoparticles of different shapes. Adv Mater 19:3124–3129

    CAS  Article  Google Scholar 

  7. 7.

    Martinez-Gutierrez F, Olive PL, Banuelos A, Orrantia E, Nino N, Morales Sanchez E, Ruiz F, Bach H, Av-Gay Y (2010) Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 6:681–688

    CAS  Article  Google Scholar 

  8. 8.

    Barr JL, Axelbaum RL, Macias ME (2006) Processing salt-encapsulated tantalum nanoparticles for high purity, ultra high surface area applications. J Nanopart Res 8:11–22

    CAS  Article  Google Scholar 

  9. 9.

    Katabi G, Koltypin Y, Cao X, Gedanken A (1996) Self-assembled monolayer coatings of iron nanoparticles with thiol derivatives. J Cryst Growth 166:760–762

    CAS  Article  Google Scholar 

  10. 10.

    De La Cruz W, Gallardo-Vega C, Tougaard S, Cota L (2008) Growth mechanism of iron nanoparticles on (0001) sapphire wafers. Microelectron J 39:1374–1375

    CAS  Article  Google Scholar 

  11. 11.

    Kato H, Minami T, Kanazawa T, Sasaki Y (2004) Mesopores created by platinum nanoparticles in zeolite crystals. Angew Chem 116:1271–1274

    Article  Google Scholar 

  12. 12.

    Park H, Choi W (2005) Photocatalytic conversion of benzene to phenol using modified TiO2 and polyoxometalates. Catal Today 101:291–297

    CAS  Article  Google Scholar 

  13. 13.

    Xu C, Kang Shen P, Liu Y (2007) Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources 164:527–531

    CAS  Article  Google Scholar 

  14. 14.

    Knight MW, Liu L, Wang Y, Brown L, Mukherjee S, King NS, Everitt HO, Nordlander P, Halas NJ (2012) Aluminum plasmonic nanoantennas. Nano Lett 12:6000–6004

    CAS  Article  Google Scholar 

  15. 15.

    Castro-Lopez M, Brinks D, Sapienza R, van Hulst NF (2011) Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas. Nano Lett 11:4674–4678

    CAS  Article  Google Scholar 

  16. 16.

    Hylton N P, Li X F, Giannini V, Lee K -H, Ekins-Daukes N J, Loo J, Vercruysse D, Van Dorpe P, Sodabanlu H, Sugiyama M and Maier S A 2013 Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes. Sci Rep. 3, N° 2874 doi:10.1038/srep02874

  17. 17.

    Ng S-H, Patey TJ, Büchel R, Krumeich F, Wang J-Z, Liu H-K, Pratsinis SE, Novák P (2009) Flame spray-pyrolyzed vanadium oxide nanoparticles for lithium battery cathodes. Phys Chem Chem Phys 11:3748–3755

    CAS  Article  Google Scholar 

  18. 18.

    Mendoza Herrera LJ, Muñetón Arboleda D, Schinca DC, Scaffardi LB (2014) Determination of plasma frequency, damping constant, and size distribution fron the complex dielectric function of noble metal nanoparticles. J Appl Phys 116:233105-1–233105-8

  19. 19.

    Muñetón Arboleda D, Santillán JMJ, Mendoza Herrera LJ, Fernández van Raap MB, Mendoza Zélis P, Muraca D, Schinca DC, Scaffardi LB (2015) Synthesis of Ni nanoparticles by femtosecond laser ablation in liquids: structure and sizing. J Phys Chem C 19(23):13184–13193

    Article  Google Scholar 

  20. 20.

    Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. John Wiley & Sons, New York

    Book  Google Scholar 

  21. 21.

    Fox M (2001) Optical properties of solids. Oxford University Press, Oxford

    Google Scholar 

  22. 22.

    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer-Verlag, Berlin

    Book  Google Scholar 

  23. 23.

    Ordal MA, Bell RJ, Alexander RW, Newquist LA, Querry MR (1988) Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths. Appl Opt 27:1203–1209

    CAS  Article  Google Scholar 

  24. 24.

    Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271–5283

    Article  Google Scholar 

  25. 25.

    Shiles E, Sasaki T, Inokuti M, Smith DY (1980) Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminum. Phys Rev B 22:1612–1626

    CAS  Article  Google Scholar 

  26. 26.

    Weaver JH, Lynch DW, Olson CG (1974) Optical properties of V, Ta, and Mo from 0.1 to 35 eV. Phys Rev B 10:501–516

    CAS  Article  Google Scholar 

  27. 27.

    Johnson PB, Christy RW (1974) Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys Rev B 9:5056

    CAS  Article  Google Scholar 

  28. 28.

    Boyd R W 2008 Nonlinear optics (Academic Press)

  29. 29.

    Kittel C (1987) Quantum theory of solids. John Wiley & Sons, New York

    Google Scholar 

  30. 30.

    Kreibig U, von Fragstein C (1969) The limitation of electron mean free path in small silver particles. Z Phys 224:307–323

    CAS  Article  Google Scholar 

  31. 31.

    Santillán J M J, Videla F A, Fernández van Raap M B, Schinca D C and Scaffardi L B 2012 Plasmon spectroscopy for subnanometric copper particles: dielectric function and core-shell sizing. J. Appl. Phys. 112 054319–1 to 054319–8

  32. 32.

    Santillán J M J, Videla F A, Fernández van Raap M B, Muraca D, Scaffardi L B and Schinca D C 2013 Influence of size-corrected bound electron contribution on nanometric silver dielectric function. Sizing through optical extinction spectroscopy. J. Phys. D: Appl. Phys. 46 435301–1 to 435301–10

  33. 33.

    Scaffardi LB, Tocho JO (2006) Size dependence of refractive index of gold nanoparticles. Nanotechnology 17:1309–1315

    CAS  Article  Google Scholar 

  34. 34.

    Kachhava CM (2003) Solid state physics, solid state device and electronics. New Age International Publishers, New Delhi

    Google Scholar 

  35. 35.

    Panda BP (2012) Electronic structure and equilibrium properties of hcp titanium and zirconium. J Phys 79:327–335

    CAS  Google Scholar 

  36. 36.

    Mattheiss LF (1970) Electronic structure of niobium and tantalum. Phys Rev B 1:373–381

    Article  Google Scholar 

  37. 37.

    Ketterson JB, Windmiller LH, Hörnfeldt S, Mueller F (1968) Fermi velocity and Fermi radius in platinum. Solid State Commun 6:851–854

    CAS  Article  Google Scholar 

  38. 38.

    Fouad SS, El-Fazary MH, El-Shazly AA, Sharaf F, Nassr KM (1991) Optical properties of vanadium thin films. J Mater Sci 26:5843–5847

    CAS  Article  Google Scholar 

  39. 39.

    Santillán J M J, Videla F A, Fernández van Raap M B, Schinca D C and Scaffardi L B 2013 Analysis of the structure, configuration, and sizing of Cu and Cu oxide nanoparticles generated by fs laser ablation of solid target in liquids. J. Appl. Phys. 113 134305–1 to 134305–9

  40. 40.

    Zheng BY, Wang Y, Nordlander P, Halas NJ (2014) Color-selective and CMOS-compatible photodetection based on aluminum plasmonics. Adv Mater 26:6318–6323

    CAS  Article  Google Scholar 

  41. 41.

    Jiao X, Wang Y, Blair S (2015) Efficient UV photocatalysis assisted by densely distributed aluminum nanoparticles. J Phys D Appl Phys 48:1–6

    CAS  Article  Google Scholar 

  42. 42.

    Honda M, Kumamoto Y, Taguchi A, Saito Y, Kawata S (2015) Efficient UV photocatalysis assisted by densely distributed aluminum nanoparticles. J Phys D Appl Phys 48:1–6

    CAS  Article  Google Scholar 

  43. 43.

    Mao J, Blair S (2015) Nanofocusing of UV light in aluminum V-grooves. J Phys D Appl Phys 48:1–10

    Google Scholar 

Download references


This work was granted by PIP 0280 and PIP 0720 of CONICET; PME2006-00018 of ANPCyT; grants 11/I197 of Facultad de Ingeniería, UNLP; and X11/680 of Facultad de Cierncias Exactas, UNLP. D. C. Schinca is a member of Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICBA), Argentina. L. B. Scaffardi, M. B. Fernández van Raap, and J. M. J. Santillán are researchers of CONICET. D. Muñetón Arboleda and L. J. Mendoza Herrera are PhD fellows of CONICET, Argentina.

Author information



Corresponding author

Correspondence to Daniel C. Schinca.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mendoza Herrera, L.J., Arboleda, D.M., Santillán, J.M.J. et al. Nanoscale Dielectric Function of Fe, Pt, Ti, Ta, Al, and V: Application to Characterization of Al Nanoparticles Synthesized by Fs Laser Ablation. Plasmonics 12, 1813–1824 (2017).

Download citation


  • Metal nanoparticles
  • Dielectric function
  • Plasmon resonance