Skip to main content
Log in

Tailoring the Multiple Fano Resonances in Nanobelt Plasmonic Cluster

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We theoretically explore the appearances and characteristics of Fano resonances in novel-designed nanobelt cluster, which shows strong modulation depths, and the Fano dips can be tailored independently. The underlying physical mechanisms contributing to Fano resonances are discussed with the electric field enhancement and charge distributions. The results demonstrate that dark-mode excitation is not a necessary condition for the existence of Fano resonances in the nanobelt cluster. The lineshape of the scattering spectra can be regulated effectively by adjusting the geometrical parameters. The effect of the incident illumination polarization orientation is also numerically investigated, indicating that Fano resonances can be completely switched off when the nanobelt cluster is induced by 90°. Moreover, multiple Fano resonances would occur as the number of the nanobelt is increased, which is explained by a physical mechanism based on temporal coupled-mode theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Luk'yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nature Mater. 9(9):707–715

    Article  Google Scholar 

  2. Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82(3):2257–2298

    Article  CAS  Google Scholar 

  3. Zhao W, Eldaiki OM, Yang R, Lu Z (2010) Deep subwavelength waveguiding and focusing based on designer surface plasmons. Opt Express 18(20):21498–21503

    Article  Google Scholar 

  4. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nature Photon 1(11):641–648

    Article  CAS  Google Scholar 

  5. Cowan AR, Young JF (2003) Optical bistability involving photonic crystal microcavities and Fano line shapes. Phys Rev E 68(4):352–375

    Article  Google Scholar 

  6. Olson J, Manjavacas A, Basu T, Huang D, Schlather AE, Zheng B, Halas NJ, Nordlander P, Link S (2016) High chromaticity aluminum plasmonic pixels for active liquid crystal displays. ACS Nano 10(1):1108–1117

    Article  CAS  Google Scholar 

  7. Ahmadivand A, Karabiyik M, Pala N (2015) Fano-like resonances in split concentric nanoshell dimers in designing negative-index metamaterials for biological-chemical sensing and spectroscopic purposes. Appl Spectrosc 69(5):563–573

    Article  CAS  Google Scholar 

  8. Ahmadivand A, Karabiyik M, Pala N (2015) Inducing multiple Fano resonant modes in split concentric nanoring resonator dimers for ultraprecise sensing. J. Optics. 17(8)

  9. Hess O, Pendry JB, Maier SA, Oulton RF, Hamm JM, Tsakmakidis KL (2012) Active nanoplasmonic metamaterials. Nature Mater. 11(7):573–584

    Article  CAS  Google Scholar 

  10. Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov VV, Van Dorpe P, Nordlander P, Maier SA (2009) Fano resonances in individual coherent plasmonic nanocavities. Nano Lett 9(4):1663–1667

    Article  CAS  Google Scholar 

  11. Hao F, Nordlander P, Sonnefraud Y, Van Dorpe P, Maier SA (2009) Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3(3):643–652

    Article  CAS  Google Scholar 

  12. Mukherjee S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ (2010) Fanoshells: nanoparticles with built-in Fano resonances. Nano Lett 10(7):2694–2701

    Article  CAS  Google Scholar 

  13. Fan JA, Bao K, Wu C, Bao J, Bardhan R, Halas NJ, Manoharan VN, Shvets G, Nordlander P, Capasso F (2010) Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett 10(11):4680–4685

    Article  CAS  Google Scholar 

  14. Naresh EK, Ting-Fung C, Alexander KV, Vladimir SM, Yong CP, Alexandra B (2014) Electrical modulation of Fano resonance in plasmonic nanostructures using graphene. Nano Lett 14(1):78–82

    Article  Google Scholar 

  15. Antonio P, Gennaro C (2014) Plasmon modes in graphene: status and prospect. Nanoscale 6(19):10927–10940

    Article  Google Scholar 

  16. V. Leonardo; H. Jin, C. Dominique, P. Antonio, K. Wojciech and Miriam, V.S (2016) Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response. Sci Rep 6, 20474.

  17. Singh R, Al-Naib IA, Koch M, Zhang W (2011) Sharp Fano resonances in THz metamaterials. Opt Express 19(7):6312–6319

    Article  Google Scholar 

  18. Viti L, Coquillat D, Politano A, Kokh KA, Aliev ZS, Mahammad BB, Oleg TE, Wojciech K, Evgueni CV, Miriam VS (2016) Plasma-wave terahertz detection mediated by topological insulators surface states. Nano Lett 16(1):80–87

    Article  CAS  Google Scholar 

  19. Chang W-S, Lassiter JB, Swanglap P, Sobhani H, Khatua S, Nordlander P, Halas NJ, Link S (2012) A plasmonic Fano switch. Nano Lett 12(9):4977–4982

    Article  CAS  Google Scholar 

  20. Hao F, Sonnefraud Y, Van Dorpe P, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8(11):3983–3988

    Article  CAS  Google Scholar 

  21. Alzar CLG, Martinez MAG, Nussenzveig P (2002) Classical analog of electromagnetically induced transparency. Am J Phys 70(1):37–41

    Article  Google Scholar 

  22. Liu SD, Yang Z, Liu R-P, Li X-Y (2012) Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings. ACS Nano 6(7):6260–6271

    Article  CAS  Google Scholar 

  23. Li GZ, Li Q, Wu L-J (2015) Double Fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation. Nanoscale 7(47):19914–19920

    Article  CAS  Google Scholar 

  24. Zhang Y, Wen F, Zhen Y-R, Nordlander P, Halas NJ (2013) Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing. Proc Natl Acad Sci U S A 110(23):9215–9219

    Article  CAS  Google Scholar 

  25. Bao K, Mirin NA, Nordlander P (2010) Fano resonances in planar silver nanosphere clusters. Appl Phys A-Mater 100(2):333–339

    Article  CAS  Google Scholar 

  26. J. Wang, X. Liu, L. Li, J. He, C. Fan, Y. Tian, P. Ding, D. Chen, Q. Xue, and E. Liang (2013) Huge electric field enhancement and highly sensitive sensing based on the Fano resonance effect in an asymmetric nanorod pair. J Optics 15(10):

  27. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nature Mater 7(6):442–453

    Article  CAS  Google Scholar 

  28. Liu F, Jin J (2015) Double Fano resonances in plasmon coupling nanorods. J Optics 17(5)

  29. Zhang Q, Xiao JJ (2013) Multiple reversals of optical binding force in plasmonic disk-ring nanostructures with dipole-multipole Fano resonances. Opt Lett 38(20):4240–4243

    Article  Google Scholar 

  30. Haynes, W. M. (2014) CRC handbook of chemistry & physics 95th, (CRC Press)

  31. Zhan YH, Lei DY, Li XF, Maier SA (2014) Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing. Nanoscale 6(9):4705–4715

    Article  CAS  Google Scholar 

  32. Hopkins B, Poddubny AN, Miroshnichenko AE, Kivshar YS (2013) Revisiting the physics of Fano resonances for nanoparticle oligomers. Phys Rev A 88(5):3477–3488

    Article  Google Scholar 

  33. Forestiere C, Dal Negro L, Miano G (2013) Theory of coupled plasmon modes and Fano-like resonances in subwavelength metal structures. Phys Rev B 88(15):5514–5518

    Article  Google Scholar 

  34. Wang G, Shen A, Zhao C, Yang L, Dai T, Wang Y, Li Y, Jiang X, Yang J (2016) Fano-resonance-based ultra-high-resolution ratio-metric wavelength monitor on silicon. Opt Lett 41(3):544–547

    Article  CAS  Google Scholar 

  35. Zhang Z, Weber-Bargioni A, Wu SW, Dhuey S, Cabrini S, Schuck PJ (2009) Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter. Nano Lett 9(12):4505–4509

    Article  CAS  Google Scholar 

  36. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  CAS  Google Scholar 

  37. Gomez DE, Teo ZQ, Altissimo M, Davis TJ, Earl S, Roberts A (2013) The dark side of plasmonics. Nano Lett 13(8):3722–3728

    Article  CAS  Google Scholar 

  38. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

    Article  CAS  Google Scholar 

  39. Haynes A, Artar A, Yanik A, Altug H (2011) Directional double Fano resonances in plasmonic hetero-oligomers. Nano Lett 11(9):3694–3700

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (Nos. 11604124, 61504050), National Natural Science Foundation of Special Theoretical Physics (No. 11547168), Natural Science Foundation of Jiangsu Province (Nos. BK20150158, BM2014402), and the Fundamental Research Funds for Central Universities (Nos. JUSRP51628B, JUSRP51517).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guofeng Yang or Shumei Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yang, G., Ye, X. et al. Tailoring the Multiple Fano Resonances in Nanobelt Plasmonic Cluster. Plasmonics 12, 1641–1647 (2017). https://doi.org/10.1007/s11468-016-0429-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0429-5

Keywords

Navigation