Plasmon-Enhanced Second Harmonic Generation: from Individual Antennas to Extended Arrays


We analyze the emission yield of the second harmonic generation (SHG) from dense ordered arrays of L-shaped Au nanoantennas within a well-defined collection angle and compare it to that of the isolated nanostructures designed with the same geometrical parameters. Thanks to the high antenna surface density, arrays display one order of magnitude higher SHG yield per unit surface with respect to isolated nanoantennas. The difference in the collected nonlinear signals becomes even more pronounced by reducing the collection angle, because of the efficient angular filtering that can be attained in dense arrays around the zero order. Albeit this key-enabling feature allows envisioning application of these platforms to nonlinear sensing, a normalization of the SHG yield to the number of excited antennas in the array reveals a reduced nonlinear emission from each individual antenna element. We explain this potential drawback in terms of resonance broadening, commonly observed in densely packed arrays, and angular filtering of the single antenna emission pattern provided by the array 0th order.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Novotny L, Van Hulst N (2011) Antennas for light. Nature Photon. 5:83–90

    CAS  Article  Google Scholar 

  2. 2.

    Biagioni P, Huang JS, Hecht B (2012) Nanoantennas for visible and infrared radiation. Rep Prog Phys 75:024402

    Article  Google Scholar 

  3. 3.

    Kauranen M, Zayats AV (2014) Nonlinear plasmonics. Nature Photon 6:737–748

    Article  Google Scholar 

  4. 4.

    Celebrano M, Zavelani-Rossi M et al (2009) Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale. Rev Sci Instr 80:033704

  5. 5.

    Finazzi M, Biagioni P, Celebrano M, Duò L (2007) Selection rules for second-harmonic generation in nanoparticles. Phys Rev B 76:125414

    Article  Google Scholar 

  6. 6.

    Zavelani-Rossi M, Celebrano M, Biagioni P et al (2008) Near-field second-harmonic generation in single gold nanoparticles. Appl Phys Lett 92:093119

    Article  Google Scholar 

  7. 7.

    Butet J, Duboisset J, Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Brevet PF (2010) Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium. Nano Lett 10:1717–1721

    CAS  Article  Google Scholar 

  8. 8.

    Hubert C, Billot L, Adam P-M et al (2007) Role of surface plasmon in second harmonic generation from gold nanorods. Appl Phys Lett 90:181105

    Article  Google Scholar 

  9. 9.

    Thyagarajan T, Rivier S, Lovera A, Martin OJF (2012) Enhanced second-harmonic generation from double resonant plasmonic antennae. Opt Express 20:12860–12865

    Article  Google Scholar 

  10. 10.

    Aouani H, Navarro-Cia M, Rahmani M et al (2012) Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light. Nano Lett 12:4997–5002

    CAS  Article  Google Scholar 

  11. 11.

    Butet J, Dutta-Gupta S, Martin OJF (2014) Surface second-harmonic generation from coupled spherical plasmonic nanoparticles: Eigenmode analysis and symmetry properties. Phys Rev B 89:245449

    Article  Google Scholar 

  12. 12.

    Czaplicki R, Husu H, Siikanen R, Mäkitalo J, Kauranen M (2013) Enhancement of second-harmonic generation from metal nanoparticles by passive elements. Phys Rev Lett 110:093902

    Article  Google Scholar 

  13. 13.

    Ginzburg P, Krasavin A, Sonnefraud Y et al (2012) Nonlinearly coupled localized plasmon resonances: resonant second-harmonic generation. Phys Rev B 86:085422

    Article  Google Scholar 

  14. 14.

    Zhang Y, Grady NK, Ayala-Orozco C, Halas NJ (2011) Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett 11:5519–5523

    CAS  Article  Google Scholar 

  15. 15.

    Rodrigo SG, Harutyunyan H, Novotny L (2013) Coherent control of light scattering from nanostructured materials by second-harmonic generation. Phys Rev Lett 110:177405

    Article  Google Scholar 

  16. 16.

    Celebrano M, Wu X, Baselli M et al (2015) Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nature Nanotech 10:412–417

    CAS  Article  Google Scholar 

  17. 17.

    Black L-J, Wiecha PR, Wang Y, de Groot CH, Paillard V, Girard C, Muskens OL, Arbouet A (2015) Tailoring second-harmonic generation in single L-shaped plasmonic nanoantennas from the capacitive to conductive coupling regime. ACS Photonics 11:1592–1601

    Article  Google Scholar 

  18. 18.

    Cesca T, Pellegrini G, Bello V, Scian C, Mazzoldi P, Calvelli P, Battaglin G, Mattei G (2010) Nonlinear optical properties of Au-Ag nanoplanets made by ion beam processing of bimetallic nanoclusters in silica. Nucl Instrum Methods B 268:3227–3230

    CAS  Article  Google Scholar 

  19. 19.

    Zheludev NI, Emelyanov VI (2004) Phase matched second harmonic generation from nanostructured metallic surfaces. J Opt A Pure Appl Opt 6:26–28

    CAS  Article  Google Scholar 

  20. 20.

    McMahon MD, Lopez R, Haglund RF Jr, Ray EA, Bunton PH (2006) Second-harmonic generation from arrays of symmetric gold nanoparticles. Phys Rev B 73:041401

    Article  Google Scholar 

  21. 21.

    Kujala S, Canfield BK, Kauranen M, Svirko Y, Turunen J (2007) Multipole interference in the second-harmonic optical radiation from gold nanoparticles. Phys Rev Lett 98:167403

    Article  Google Scholar 

  22. 22.

    Awada C, Kessi F, Jonin C, Adam P-M, Kostcheev S, Bachelot R, Royer P, Russier-Antoine I, Benichou E, Bachelier G, Brevet PF (2011) On- and off-axis second harmonic from an array of gold metallic nanocylinders. J Appl Phys 110:023109

    Article  Google Scholar 

  23. 23.

    Pellegrini G, Mattei G, Mazzoldi P (2011) Nanoantenna array for large-area emission enhancement. J Phys Chem C 115:24662–24665

    CAS  Article  Google Scholar 

  24. 24.

    Segal N, Keren-Zur S, Hendler N, Ellenbogen T (2015) Controlling light with metamaterial-based nonlinear photonic crystals. Nature Phot 9:180–184

    CAS  Article  Google Scholar 

  25. 25.

    Keren-Zur S, Avayu O, Michaeli L, Ellenbogen T (2016) Nonlinear beam shaping with plasmonic metasurfaces. ACS Phot. 3:117–123

    CAS  Article  Google Scholar 

  26. 26.

    Czaplicki R, Kiviniemi A, Laukkanen J, Lehtolahti J, Kuittinen M, Kauranen M (2016) Surface lattice resonances in second-harmonic generation from metasurfaces. Opt Lett 41:2684–2687

    Article  Google Scholar 

  27. 27.

    Stokes N, Cortie MB, Davis TI, McDonagh AM (2012) Plasmon resonances in V-shaped gold nanostructures. Plasmonics 7:235–243

    CAS  Article  Google Scholar 

  28. 28.

    Vercruysse D, Sonnefraud Y, Verellen N, Fuchs FB, Di Martino G, Lagae L, Moshchalkov VV, Maier SA, Van Dorpe P (2013) Unidirectional side scattering of light by a single-element nanoantenna. Nano Lett 13:3843–3849

    CAS  Article  Google Scholar 

  29. 29.

    Mesch M, Metzger B, Hentschel M, Giessen H (2016) Nonlinear plasmonic sensing. Nano Lett 16:3155–3159

    CAS  Article  Google Scholar 

  30. 30.

    Pellegrini G, Mattei G, Mazzoldi P (2009) Tunable, directional and wavelength selective plasmonic nanoantenna arrays. Nanotechnology 20:065201

    CAS  Article  Google Scholar 

  31. 31.

    Lindfors K, Dregely D, Lippitz M, Engheta N, Totzeck M, Giessen H (2016) Imaging and steering unidirectional emission from nanoantenna array metasurfaces. ACS Phot 3:286–292

    CAS  Article  Google Scholar 

  32. 32.

    Silver S, James H M, Microwave antenna theory and design, The Maple Press Company, York, PA.

  33. 33.

    FDTD Solutions, Lumerical Inc., Canada.

  34. 34.

    Giannini V, Vecchi G, Gómez-Rivas J (2010) Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas. Phys Rev Lett 105:266801

    CAS  Article  Google Scholar 

  35. 35.

    Zhai LL, Kelly KL, Schatz GC (2003) The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J Phys Chem B 107:7343–7350

    Article  Google Scholar 

  36. 36.

    Comsol Multiphysics, Comsol, Inc., USA.

  37. 37.

    de Ceglia D, Vincenti MA, De Angelis C, Locatelli A, Haus JW, Scalora M (2015) Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas. Opt Express 23:715–1729

    Article  Google Scholar 

Download references


We acknowledge the support from the Fondazione Cariplo through the project SHAPES (project number 2013-0736). As the nanofabrication process was carried out through the facilities of the NanoMat platform (, the authors acknowledge the financial supports from the “Ministère de l’enseignement supérieur et de la recherche”, the “Conseil régional Champagne-Ardenne”, the “Fonds Européen de Développement Régional (FEDER) fund”, and the “Conseil général de l’ Aube”. This work was performed in the context of the European COST Action MP1302 Nanospectroscopy and supported by it through a Short-Term Scientific Mission.

Author information



Corresponding author

Correspondence to Michele Celebrano.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baselli, M., Baudrion, AL., Ghirardini, L. et al. Plasmon-Enhanced Second Harmonic Generation: from Individual Antennas to Extended Arrays. Plasmonics 12, 1595–1600 (2017).

Download citation


  • Second harmonic generation
  • Plasmonics
  • Nanoantenna arrays
  • Beaming