Skip to main content
Log in

Resonant Broadband Field Enhancement in Cylindrical Plasmonic Structure Surrounded by Perovskite Environment

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We demonstrate the optical response of metal nanoparticles and their interaction with organic-inorganic perovskite (methyl ammonia lead halide (CH3NH3PbI3)) environment using discrete dipole approximation (DDA) simulation technique. Important optical properties like absorption, scattering, and electric field calculations for metal nanoparticle using different geometry have been analyzed. The metal nanoparticles embedded in the perovskite media strongly support surface plasmon resonances (SPRs). The plasmonic interaction of metal nanoparticles with perovskite matrix is a strong function of MNP’s shape, size, and surrounding environment that can manipulate the optical properties considerably. The cylindrical shape of MNPs embedded in perovskite environment supports the SPR which is highly tunable to subwavelength range of 400–800 nm. Wide range of particle sizes has been selected for Ag, Au, and Al spherical and cylindrical nanostructures surrounded by perovskite matrix for simulation. The chosen hybrid material and anisotropy of structure together make a complex function for resonance shape and width. Among all MNPs, 70-nm spherical silver nanoparticle (NP) and cylindrical Ag NP having diameter of 50 nm and length of 70 nm (aspect ratio 1.4) generate strong electric field intensity that facilitates increased photon absorption. The plasmonic perovskite interaction plays an important role to improve the absorption of photon inside the thin film perovskite environment that may be applicable to photovoltaics and photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Green MA (2004) Recent developments in photovoltaics. Sol Energy 76:3

    Article  CAS  Google Scholar 

  2. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  3. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  4. Maier S (2007) Plasmonics: fundamentals and applications. Springer, Berlin

    Google Scholar 

  5. Polman A et al (2012) Plasmonic light trapping in thin-film Si solar cells. J Opt 14:024002

    Article  Google Scholar 

  6. Mokkapati S, Catchpole KR (2012) Nanophotonic light trapping in solar cells. J Appl Phys 112:101101

    Article  Google Scholar 

  7. Spinelli P et al (2012) Plasmonic light trapping in thin-film Si solar cells. J Opt 14:024002

    Article  Google Scholar 

  8. Kelly KL, Coronado E, Zhao LL, Schatz GJ (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  9. Bohren CF (1983) How can a particle absorb more than the light incident on it. Am J Phys 51:323–327

    Article  CAS  Google Scholar 

  10. Brongersma ML, Kik PG (1988) Surface plasmon nanophotonics, springer series in optical sciences

  11. Ji A, Sharma R, Pathak H, Pathak NK, Sharma RP (2015) Numerical simulation of plasmonic light trapping in thin-film Si solar cells: surface coverage effect. J Phys D Appl Phys 48:275101

    Article  Google Scholar 

  12. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silico solar cells. J Appl Phys 101:093105

    Article  Google Scholar 

  13. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nature Mat 9:205

    Article  CAS  Google Scholar 

  14. Brolo AG (2012) Plasmonics for future biosensors. Nat Photonics 6:709–713

    Article  CAS  Google Scholar 

  15. Gaspar D, Ferreira I (2013) Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation. Sci Rep 3. doi: 10.1038/srep01469

  16. Yin YD, Gao L, Qiu CW (2011) Electromagnetic theory of tunable SERS manipulated with spherical anisotropy in coated nanoparticles. J Phys Chem C 115:8893–8899

    Article  CAS  Google Scholar 

  17. Pin L (2010) Speed-up electronic integrated circuits with plasmonic technology. IEEE 978–1–4244-5369

  18. Prasad PN (2012) Introduction to nanomedicine and nanobioengineering. Wiley

  19. Aslan K, Lakowicz JR, Geddes CD (2005) Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr Opp chem bio 9:538–544

    Article  CAS  Google Scholar 

  20. Aslan K, Lakowicz JR, Geddes CD (2004) Nanogold-plasmon-resonance-based glucose sensing. Anal Chim Acta 517:139–114

    Article  CAS  Google Scholar 

  21. Roco MC, Mirkin CA, Hersam MC (2011) Nanotechnology research directions for societal needs in 2020: summary of international study. J Nanopart Res 13:897–919

    Article  Google Scholar 

  22. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685

    Article  CAS  Google Scholar 

  23. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 6:21793

    Article  Google Scholar 

  24. Pathak H, Alok J, Richa S, Sharma RP (2015) Optical properties of metal subwavelength structures for realistic geometries in a dielectric matrix using DDA: an error analysis. Plasmonics 10:783–789

    Article  CAS  Google Scholar 

  25. Zhang Q, Large N, Nordlander P, Wang H (2014) Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS. J Phys Chem 5:370

    CAS  Google Scholar 

  26. Felidj N, Grand J, Laurent G, Aubard J, Levi G, Hohenau A, Galler N, Aussenegg FR, Krenn JR (2008) Multipolar surface plasmon peaks on gold nano-triangles. J Phys Chem 128:094702

    Article  CAS  Google Scholar 

  27. Pathak NK, Ji A, Sharma RP (2014) Study of efficiency enhancement in layered geometry of excitonic plasmonic solar cells. Appl Phy A 115:1445–1450

    Article  CAS  Google Scholar 

  28. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    Article  CAS  Google Scholar 

  29. R. F. Service (2014) Energy technology: perovskite solar cells keep on surging. Science 344:458. doi:10.1126/science.344.6183.458

    Article  Google Scholar 

  30. Zhou H, Chen Q, Li G, Luo S, Song TB, Duan HS, Hong Z, You J, Liu Y, Yang Y (2014) Photovoltaics interface engineering of highly efficient perovskite solar cells. Science 345:542–546

    Article  CAS  Google Scholar 

  31. Chander N, Chandrasekhar PS, Komarala VK (2014) Solid state plasmonic dye sensitized solar cells based on solution processed perovskite CsSnI3 as the hole transporter. RSC Adv 4:55658–55665

    Article  CAS  Google Scholar 

  32. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  33. Santiago FF, Bisquert J, Cevey L, Chen P, Wang M, Zakeeruddin SM, Gratzel M (2009) Electron transport and recombination in solid-state dye solar cell with spiro-OMeTAD as hole conductor. J Am Chem Soc 131:558

    Article  Google Scholar 

  34. Cai N, Moon SJ, Cevey-Ha L, Moehl T, Humphry-Baker R, Wang P, Zakeeruddin SM, Gratzel M (2011) An organic D-π-a dye for record efficiency solid-state sensitized heterojunction solar cells. Nano Lett 11:1452

    Article  CAS  Google Scholar 

  35. Green MA, Baillie AH, Snaith HJ (2014) The emergence of perovskite solar cells. Nat. Photonics 8:506

    Article  CAS  Google Scholar 

  36. Lin Q, Ardalan A, Chandra R, Nagiri R, Burn PL, Meredith P (2015) Electro-optics of perovskite solar cells. Nat Photonics 9:106

    Article  CAS  Google Scholar 

  37. Loper P, Stuckelberger M, Niesen B, Werner J, Filipic M, Moon S-J, Yum J-H, Topic M, De Wolf S, Ballif C (2015) High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J Phys Chem Lett 6:66–71

    Article  CAS  Google Scholar 

  38. Park NG (2013) Organometal perovskite light absorbers toward a 20 % efficiency low-cost solid state mesoscopic solar cell. J Phys Chem Lett 4:2423–2429

    Article  CAS  Google Scholar 

  39. Snaith HJ et al (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4:3623–3630

    Article  CAS  Google Scholar 

  40. Snaith HJ et al (2013) Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles. Nano Lett 13:4505–4510

    Article  Google Scholar 

  41. Liu F et al (2015) Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles. RSC Adv 5:11175

    Article  Google Scholar 

  42. Mhaisalkar SG et al (2014) Current progress and future perspectives for organic/inorganic perovskite solar cells. Mat Today 17:1

    Article  Google Scholar 

  43. Carlo AD (2014) High efficiency CH3NH3PbI(3_x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer. J Power Sources 251:152–156

    Article  Google Scholar 

  44. Garcia MA (2011) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D Appl Phys 44:283001

    Article  Google Scholar 

  45. Sangita JA, Sharma RP (2012) A study of nanoellipsoids for thin-film plasmonic solar cell applications. J Phys D Appl Phys 45:275101

    Article  Google Scholar 

  46. Haynes CL, McFarland AD, Zhao LL, Richard P, Duyne V, Schatz GC (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107:7343–7350

    Article  Google Scholar 

  47. Hao E, Schatz GC, Hupp JT (2004) Synthesis and optical properties of anisotropic metal nanoparticles. J fluoresence B 120:357–366

    CAS  Google Scholar 

  48. Vial A, Grimault AS, Macías D, Barchiesi D, de la Chapelle ML (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71(8):085416

    Article  Google Scholar 

  49. Ladanov M, Cheemalapati S, Pyayt A (2013) Optimization of light delivery by a nanowire-based single cell optical endoscope. Opt Express 21:28001–28009

    Article  Google Scholar 

  50. Luo L et al (2015) Surface plasmon propelled high-performance CdSe nanoribbons Photodetector. Opt Express 23:12979–12988

    Article  CAS  Google Scholar 

  51. Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am 11:1491–1499

    Article  Google Scholar 

  52. Draine BT, Flatau PJ (2012) Fast near field calculations in the discrete dipole approximation for regular rectilinear grids. Opt Express 20:1247

    Article  Google Scholar 

  53. Palik ED (1985) Handbook of optical constants of solids. Academic, Orlando

    Google Scholar 

  54. Knight MW, King NS, Liu L, Everitt HO, Nordlander P, Halas NJ (2014) Aluminum for plasmonics. ACS Nano 8:834–840

    Article  CAS  Google Scholar 

  55. Wei Z et al (2013) Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles. Nano Lett 13:4505–4510

    Article  Google Scholar 

  56. Roopak S, Pathak NK, Ji A, Sharma RP (2015) Numerical simulation of broadband scattering by coated and noncoated metal nanostructures using discrete dipole approximation method. Plasmonics. doi:10.1007/s11468-015-0052-x

    Google Scholar 

  57. Draine BT and Flatau PJ. User guide to the discrete dipole approximation code DDSCAT 7.3, available at http://arxiv.org/abs/1202.3424

  58. Draine BT, Flatau PJ (2008) The discrete dipole approximations for periodic targets: theory and tests. J Opt Soc Am 25:2693–2703

    Article  Google Scholar 

  59. Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New York

    Google Scholar 

  60. Johnson PB, Christy RW (1972) Optical constants of the Noble metals. Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  61. AM1.5 spectra, American society for testing, http://rredc.nreal.gov/solar/spectra/am1.5

  62. Shockley W, Queisser H (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hardik Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, H., Ji, A., Pathak, N.K. et al. Resonant Broadband Field Enhancement in Cylindrical Plasmonic Structure Surrounded by Perovskite Environment. Plasmonics 12, 1511–1522 (2017). https://doi.org/10.1007/s11468-016-0413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0413-0

Keywords

Navigation