, Volume 12, Issue 5, pp 1463–1479 | Cite as

Review of Metasurface Plasmonic Structural Color

  • Mehdi Keshavarz HedayatiEmail author
  • Mady ElbahriEmail author


The environmental concerns in the current century is not only limited to the polluting effect of the fossil fuel consumption but also the recycling challenges of waste turns to be a substantial challenges of the industry. Recycling of colored discarded materials is very difficult because of the problems in relation to the dissociation of diverse chemical compounds present in the colorant agents. Single or double component materials which could create various colors by geometrical changes can be a great solution to the mentioned limitations. Metasurfaces’ and metamaterials’ structural color therefore draws attention as they enable generation of vivid colors only by geometrical arrangement of metals which not only ease the recycling but at the same time enhance the mechanical stability of the colors. In this review, the progress in the field of plasmonic metasurface- and metamaterial-based structural colors is reviewed.


Plasmonics Metamaterials Structural color Metasurface Plasmonic color 


  1. 1.
    Burresi M, Cortese L, Pattelli L, Kolle M, Vukusic P, Wiersma D, Steiner U, Vignolini S (2014) Bright-white beetle scales optimise multiple scattering of light. Scientific reports 4:6075CrossRefGoogle Scholar
  2. 2.
    Vukusic P, Sambles R, Lawrence C, Wakely G (2001) Sculpted-multilayer optical effects in two species of Papilio butterfly. Appl Opt 40:1116–1125CrossRefGoogle Scholar
  3. 3.
    Prum R, Morrison R, Eyck G (1994) Structural color production by constructive reflection from ordered collagen arrays in a bird. J Morphol 222:61–72CrossRefGoogle Scholar
  4. 4.
    Mason C (1926) Structural colors in insects. I. J Phys Chem 30:383–395CrossRefGoogle Scholar
  5. 5.
    Gower C (1936) The cause of blue color as found in the bluebird (Sialia sialis) and the blue Jay (Cyanocitta cristata). Auk 53:178–185CrossRefGoogle Scholar
  6. 6.
    Ralph C (1969) The control of color in birds. Am Zool 9:521–530CrossRefGoogle Scholar
  7. 7.
    Strong RM (1902) The development of color in the definitive feather. Science 15:527–527Google Scholar
  8. 8.
    Wright S (1917) Color inheritance in mammals results of experimental breeding can be linked up with chemical researches on pigments—coat colors of all mammals classified as due to variations in action of two enzymes. J Hered 8:224–235CrossRefGoogle Scholar
  9. 9.
    Davenport G, Davenport C (1907) Heredity of eye-color in man. Science 26:589–592CrossRefGoogle Scholar
  10. 10.
    Parker A (2000) 515 million years of structural colour. J Opt A Pure Appl Opt 2:R15CrossRefGoogle Scholar
  11. 11.
    Hinton H, Gibbs D (1969) An electron microscope study of the diffraction gratings of some carabid beetles. J Insect Physiol 15:959–962CrossRefGoogle Scholar
  12. 12.
    Parker A (2002) Natural photonic engineers. Materials today 5:26–31CrossRefGoogle Scholar
  13. 13.
    Zhao Y, Xie Z, Gu H, Zhu C, Gu Z (2012) Bio-inspired variable structural color materials. Chem Soc Rev 41:3297–3317CrossRefGoogle Scholar
  14. 14.
    Kinoshita S, Yoshioka S (2005) Structural colors in nature: the role of regularity and irregularity in the structure. ChemPhysChem 6:1442–1459CrossRefGoogle Scholar
  15. 15.
    Padovani S, Puzzovio D, Sada C, Mazzoldi P, Borgia I, Sgamellotti A, Brunetti B, Cartechini L, D’acapito F, Maurizio C, Shokoui F, Oliaiy P, Rahighi J, Lamehi-rachti M, Shokoui F (2006) XAFS study of copper and silver nanoparticles in glazes of medieval middle-east lustreware (10th–13th century). Applied Physics A 83:521–528CrossRefGoogle Scholar
  16. 16.
    Stockman M (2011) Nanoplasmonics: the physics behind the applications. Phys Today 64:39–44CrossRefGoogle Scholar
  17. 17.
    Daniel M, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  18. 18.
    P. Sciau (2012)Nanoparticles in ancient materials: the metallic lustre decorations of medieval ceramics. In: The delivery of nanoparticles, INTECH Open Access Publisher, , pp. 525–540Google Scholar
  19. 19.
    Angelini I, Artioli G, Bellintani P, Diella V, Gemmi M, Polla A, Rossi A (2004) Chemical analyses of bronze age glasses from Frattesina di Rovigo, northern Italy. J Archaeol Sci 31:1175–1184CrossRefGoogle Scholar
  20. 20.
    Pradell T, Molera J, Smith A, Tite M (2008) Early Islamic lustre from Egypt, Syria and Iran (10th to 13th century AD). J Archaeol Sci 35:2649–2662CrossRefGoogle Scholar
  21. 21.
    Faraday M (1857) The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147:145–181CrossRefGoogle Scholar
  22. 22.
    Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330:377–445CrossRefGoogle Scholar
  23. 23.
    Hedayati MK, Faupel F, Elbahri M (2014) Review of plasmonic nanocomposite metamaterial absorber. Materials 7(2):1221–1248CrossRefGoogle Scholar
  24. 24.
    Murray WA, Barnes WL (2007) Plasmonic materials. Adv Mater 19(22):3771–3782CrossRefGoogle Scholar
  25. 25.
    Huffman D, Bohren CA (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  26. 26.
    Elbahri M, Zillohu U, Gothe B, Hedayati M, Abdelaziz R, El-Khozondar H, Bawa’aneh M, Abdelaziz M, Lavrinenko A, Zhukovsky S, Homaeigohar H (2015) Photoswitchable molecular dipole antennas with tailored coherent coupling in glassy composite. Light: Science & Applications 4:e316CrossRefGoogle Scholar
  27. 27.
    M. Hedayati (2014) Tunable plasmonic metamaterials, Kiel: Doctoral DissertationGoogle Scholar
  28. 28.
    Padilla W, Basov D, Smith D (2006) Negative refractive index metamaterials. Materials today 9:28–35CrossRefGoogle Scholar
  29. 29.
    Smith D, Padilla W, Vier D, Nemat-Nasser S, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184CrossRefGoogle Scholar
  30. 30.
    Pendry J, Holden A, Robbins D, Stewart W (1999) Magnetism from conductors and enhanced nonlinear phenomena. Microwave Theory and Techniques IEEE Transactions on 47:2075–2084CrossRefGoogle Scholar
  31. 31.
    Pendry J (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966CrossRefGoogle Scholar
  32. 32.
    Pendry J, Schurig D, Smith D (2006) Controlling electromagnetic fields. Science 312:1780–1782CrossRefGoogle Scholar
  33. 33.
    Zheludev N, Prosvirnin S, Papasimakis N, Fedotov V (2008) Lasing spaser. Nat Photonics 2:351–354CrossRefGoogle Scholar
  34. 34.
    Boltasseva A et al (2011) Low-loss plasmonic metamaterials. Science 331:290–291CrossRefGoogle Scholar
  35. 35.
    Graydon O (2015) View from... SPP7: a colourful future? Nat Photonics 9:487–488CrossRefGoogle Scholar
  36. 36.
    Soukoulis C, Wegener M (2011) Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photonics 5:523–530Google Scholar
  37. 37.
    Watts C, Liu X, Padilla W (2012) Metamaterial electromagnetic wave absorbers. Adv Mater 24:OP98–OP120Google Scholar
  38. 38.
    Asadchy V, Faniayeu I, Ra’di Y, Khakhomov S, Semchenko I, Tretyakov S (2015) Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption. Physical Review X 5:031005CrossRefGoogle Scholar
  39. 39.
    Ra’di Y, Simovski C, Tretyakov S (2015) Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Physical Review Applied 3:037001CrossRefGoogle Scholar
  40. 40.
    Teyssier J, Saenko S, Van Der Marel D, Milinkovitch M (2015) Photonic crystals cause active colour change in chameleons. Nat Commun 6:6368CrossRefGoogle Scholar
  41. 41.
    Whitney A, Van Duyne R, Casadio F (2006) An innovative surface-enhanced Raman spectroscopy (SERS) method for the identification of six historical red lakes and dyestuffs. J Raman Spectrosc 37:993–1002CrossRefGoogle Scholar
  42. 42.
    Anastas P, Lankey R (2000) Life cycle assessment and green chemistry: the yin and yang of industrial ecology. Green Chem 2:289–295CrossRefGoogle Scholar
  43. 43.
    Yokogawa S, Burgos S, Atwater H (2012) Plasmonic color filters for CMOS image sensor applications. Nano Lett 12:4349–4354CrossRefGoogle Scholar
  44. 44.
    Furukawa S, Masui T, Imanaka N (2006) Synthesis of new environment-friendly yellow pigments. J Alloys Compd 418:255–258CrossRefGoogle Scholar
  45. 45.
    Denton E (1970) Review lecture: on the organization of reflecting surfaces in some marine animals. Philosophical Transactions of the Royal Society B: Biological Sciences 258:285–313CrossRefGoogle Scholar
  46. 46.
    Wu Z, Lee D, Rubner M, Cohen R (2007) Structural color in porous, Superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks. Small 3:1445–1451CrossRefGoogle Scholar
  47. 47.
    Sato O, Kubo S, Gu Z (2008) Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands. Acc Chem Res 42:1–10CrossRefGoogle Scholar
  48. 48.
    Zhao Y, Xie Z, Gu H, Zhu C, Gu Z (2012) Bio-inspired variable structural color materials. Chem Soc Rev 41:3297–3317CrossRefGoogle Scholar
  49. 49.
    Pursiainen O, Baumberg J, Winkler H, Viel B, Spahn P, Ruhl T (2007) Nanoparticle-tuned structural color from polymer opals. Opt Express 15:9553–9561CrossRefGoogle Scholar
  50. 50.
    Saito A (2011) Material design and structural color inspired by biomimetic approach. Sci Technol Adv Mater 12:064709CrossRefGoogle Scholar
  51. 51.
    Xu T, Shi H, Wu Y, Kaplan A, Ok J, Guo L (2011) Structural colors: from plasmonic to carbon nanostructures. Small 7:3128–3136CrossRefGoogle Scholar
  52. 52.
    Xue J, Zhou Z, Wei Z, Su R, Lai J, Li J, Li C, Zhang T, Wang X (2015) Scalable, full-colour and controllable chromotropic plasmonic printing. Nat Commun 6:8906CrossRefGoogle Scholar
  53. 53.
    Saito A (2011) Material design and structural color inspired by biomimetic approach. Sci Technol Adv Mater 12:064709CrossRefGoogle Scholar
  54. 54.
    Yu Y, Wen L, Song S, Chen Q (2014) Transmissive/reflective structural color filters: theory and applications. J Nanomater 2014:212637Google Scholar
  55. 55.
    Gu Y, Zhang L, Yang J, Yeo S, Qiu C (2015) Color generation via subwavelength plasmonic nanostructures. Nanoscale 7:6409–6419CrossRefGoogle Scholar
  56. 56.
    Jahani S, Jacob Z (2016) All-dielectric metamaterials. Nat Nanotechnol 11:23–36CrossRefGoogle Scholar
  57. 57.
    Ebbesen TW, Lezec H, Ghaemi H, Thio T, Wolff P (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669CrossRefGoogle Scholar
  58. 58.
    Genet C, Ebbesen T (2007) Light in tiny holes. Nature 445:39–46CrossRefGoogle Scholar
  59. 59.
    Ghaemi H, Thio T, Grupp D, Ebbesen T, Lezec H (1998) Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B 58:6779CrossRefGoogle Scholar
  60. 60.
    Li Z, Clark A, Cooper J (2016) Dual color plasmonic pixels create a polarization controlled nano color palette. ACS Nano 10:492–498CrossRefGoogle Scholar
  61. 61.
    Si G, Zhao Y, Liu H, Teo S, Zhang M, Huang T, Danner A, Teng J (2011) Annular aperture array based color filter. Appl Phys Lett 99:033105CrossRefGoogle Scholar
  62. 62.
    Sun L, Hu X, Xu Y, Wu Q, Shi B, Ye M, Wang L, Zhao J, Li X, Wub Y, Yang S, Tai R, Fecht H, Jiang J, Yang S (2014) Influence of structural parameters to polarization-independent color-filter behavior in ultrathin Ag films. Opt Commun 333:16–21CrossRefGoogle Scholar
  63. 63.
    Degiron A, Ebbesen T (2005) The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. J Opt A Pure Appl Opt 7:S90CrossRefGoogle Scholar
  64. 64.
    Sun L, Hu X, Zeng B, Wang L, Yang S, Tai R, Fecht H, Zhang D, Jiang J (2015) Effect of relative nanohole position on colour purity of ultrathin plasmonic subtractive colour filters. Nanotechnology 26:305204CrossRefGoogle Scholar
  65. 65.
    Fecht H, Zhang D, Jiang J (2015) Effect of relative nanohole position on colour purity of ultrathin plasmonic subtractive. Nanotechnology 26:305204CrossRefGoogle Scholar
  66. 66.
    Lee H, Yoon Y, Lee S, Kim S, Lee K (2007) Color filter based on a subwavelength patterned metal grating. Opt Express 15:15457–15463CrossRefGoogle Scholar
  67. 67.
    Chen Q, Cumming D (2010) High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt Express 18:14056–14062CrossRefGoogle Scholar
  68. 68.
    Chen Q, Chitnis D, Walls K, Drysdale T, Collins S, Cumming D (2012) CMOS photodetectors integrated with plasmonic color filters. Photonics Technology Letters, IEEE 24:197–199CrossRefGoogle Scholar
  69. 69.
    Chen Q, Das D, Chitnis D, Walls K, Drysdale T, Collins S, Cumming D (2012) A CMOS image sensor integrated with plasmonic colour filters. Plasmonics 7:695–699CrossRefGoogle Scholar
  70. 70.
    Rajasekharan R, Balaur E, Minovich A, Collins S, James T, Djalalian-Assl A, Ganesan K, Tomljenovic-Hanic S, Kandasamy S, Skafidas E, Neshev D, Mulvaney P, Roberts A, Prawer S (2014) Filling schemes at submicron scale: development of submicron sized plasmonic colour filters. Scientific reports 4:6435CrossRefGoogle Scholar
  71. 71.
    Inoue D, Miura A, Nomura T, Fujikawa H, Sato K, Ikeda N, Tsuya D, Sugimoto Y, Koide Y (2011) Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength. Appl Phys Lett 98:093113CrossRefGoogle Scholar
  72. 72.
    Yu Y, Chen Q, Wen L, Hu X, Zhang H (2015) Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters. Opt Express 23:21994–22003CrossRefGoogle Scholar
  73. 73.
    Ya-Qi M, Jin-Hai S, Ya-Feng Z, Bing-Rui L, Si-Chao Z, Yan S, Xin-Ping Q, Yi-Fang C (2015) Design and fabrication of structural color by local surface plasmonic meta-molecules. Chinese Physics B 24:080702CrossRefGoogle Scholar
  74. 74.
    Ritchie R, Arakawa E, Cowan J, Hamm R (1968) Surface-plasmon resonance effect in grating diffraction. Phys Rev Lett 21:1530CrossRefGoogle Scholar
  75. 75.
    Homola J, Koudela I, Yee S (1999) Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sensors Actuators B Chem 54:16–24CrossRefGoogle Scholar
  76. 76.
    Zeng B, Gao Y, Bartoli F (2013) Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters. Scientific reports 3:2840CrossRefGoogle Scholar
  77. 77.
    Kaplan A, Xu T, Guo L (2011) High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography. Appl Phys Lett 99:143111CrossRefGoogle Scholar
  78. 78.
    Yoon Y, Park C, Lee S (2012) Highly efficient color filter incorporating a thin metal–dielectric resonant structure. Appl Phys Express 5:022501CrossRefGoogle Scholar
  79. 79.
    Park C, Yoon Y, Shrestha V, Park C, Lee S, Kim E (2013) Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating. Opt Express 21:28783–28793CrossRefGoogle Scholar
  80. 80.
    Shrestha V, Lee S, Kim E, Choi D (2014) Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array. Nano Lett 14:6672–6678CrossRefGoogle Scholar
  81. 81.
    Honma H, Takahashi K, Fukuhara M, Ishida M, Sawada K (2014) Free-standing aluminium nanowire arrays for high-transmission plasmonic colour filters. Micro & Nano Letters, IET 9:891–895CrossRefGoogle Scholar
  82. 82.
    Shrestha V, Lee S, Kim E, Choi D (2015) Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array. Scientific reports 5:12450CrossRefGoogle Scholar
  83. 83.
    Ye M, Hu X, Sun L, Shi B, Xu Y, Wang L, Zhaob J, Wub Y, Yangb S, Taib R, Jiang J (2015) Duty cycle dependency of the optical transmission spectrum in an ultrathin nanostructured Ag film. J Alloys Compd 621:244–249CrossRefGoogle Scholar
  84. 84.
    Kedawat G, Kumar P, Vijay Y, Gupta B (2015) Fabrication of highly efficient resonant structure assisted ultrathin artificially stacked Ag/ZnS/Ag multilayer films for color filter applications. J Mater Chem C 3:6745CrossRefGoogle Scholar
  85. 85.
    Duempelmann L, Luu-Dinh A, Gallinet B, Novotny L (2016) Four-fold color filter based on plasmonic phase retarder. ACS Photonics 3:190–196CrossRefGoogle Scholar
  86. 86.
    Kaplan A, Xu T, Wu Y, Guo L (2010) Multilayer pattern transfer for plasmonic color filter applications. J Vac Sci Technol B 28:C6O60–C6O63CrossRefGoogle Scholar
  87. 87.
    Hu X, Sun L, Shi B, Ye M, Xu Y, Wang L, Zhao J, Li X, Wu Y, Yang S, Tai R, Fecht H, Jiang J, Tai R (2014) Influence of film thickness and nanograting period on color-filter behaviors of plasmonic metal Ag films. J Appl Phys 115:113104CrossRefGoogle Scholar
  88. 88.
    Xiao B, Pradhan S, Santiago K, Rutherford G, Pradhan A (2015) Enhanced optical transmission and Fano resonance through a nanostructured metal thin film. Scientific reports 5:10393CrossRefGoogle Scholar
  89. 89.
    Ye Y, Zhang H, Zhou Y, Chen L (2010) Color filter based on a submicrometer cascaded grating. Opt Commun 283:613–616CrossRefGoogle Scholar
  90. 90.
    Duempelmann L, Casari D, Luu-Dinh A, Gallinet B, Novotny L (2015) Color rendering plasmonic aluminum substrates with angular symmetry breaking. ACS Nano 9:12383–12391CrossRefGoogle Scholar
  91. 91.
    Yun H, Lee S, Hong K, Yeom J, Lee B (2015) Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity. Nat Commun 6:7133CrossRefGoogle Scholar
  92. 92.
    Zheng J, Ye Z, Sheng Z (2016) Reflective low-sideband plasmonic structural colors. Optical Materials Express 6:381–387CrossRefGoogle Scholar
  93. 93.
    Hu X, Sun L, Zeng B, Wang L, Yu Z, Bai S, Yang S, Zhao L, Li Q, Qiu M, Tai R (2016) Polarization-independent plasmonic subtractive color filtering in ultrathin Ag nanodisks with high transmission. Appl Opt 55:148–152CrossRefGoogle Scholar
  94. 94.
    Vorobyev A, Guo C (2008) Colorizing metals with femtosecond laser pulses. Appl Phys Lett 92:041914CrossRefGoogle Scholar
  95. 95.
    Li G, Li J, Yang L, Li X, Hu Y, Chu J, Huang W (2013) Evolution of aluminum surface irradiated by femtosecond laser pulses with different pulse overlaps. Appl Surf Sci 276:203–209CrossRefGoogle Scholar
  96. 96.
    Ahsan M, Ahmed F, Kim Y, Lee M, Jun M (2011) Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures. Appl Surf Sci 257:7771–7777CrossRefGoogle Scholar
  97. 97.
    Dusser B, Sagan Z, Soder H, Faure N, Colombier J, Jourlin M, Audouard E (2010) Controlled nanostructrures formation by ultra fast laser pulses for color marking. Opt Express 18:2913–2924CrossRefGoogle Scholar
  98. 98.
    Li Z, Zheng H, Teh K, Liu Y, Lim G, Seng H, Yakovlev N (2009) Analysis of oxide formation induced by UV laser coloration of stainless steel. Appl Surf Sci 256:1582–1588CrossRefGoogle Scholar
  99. 99.
    Antończak A, Kocoń D, Nowak M, Kozioł P, Abramski K (2013) Laser-induced colour marking—sensitivity scaling for a stainless steel. Appl Surf Sci 264:229–236CrossRefGoogle Scholar
  100. 100.
    Lehmuskero A, Kontturi V, Hiltunen J, Kuittinen M (2010) Modeling of laser-colored stainless steel surfaces by color pixels. Applied Physics B 98:497–500CrossRefGoogle Scholar
  101. 101.
    Li G, Li J, Hu Y, Zhang C, Li X, Chu J, Huang W (2014) Realization of diverse displays for multiple color patterns on metal surfaces. Appl Surf Sci 316:451–455CrossRefGoogle Scholar
  102. 102.
    Luo F, Ong W, Guan Y, Li F, Sun S, Lim G, Hong M (2015) Study of micro/nanostructures formed by a nanosecond laser in gaseous environments for stainless steel surface coloring. Appl Surf Sci 328:405–409CrossRefGoogle Scholar
  103. 103.
    Yao J, Zhang C, Liu H, Dai Q, Wu L, Lan S, Gopal A, Trofimov V, Lysak T (2012) Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses. Appl Surf Sci 258:7625–7632CrossRefGoogle Scholar
  104. 104.
    Ionin A, Kudryashov S, Makarov S, Seleznev L, Sinitsyn D, Golosov E, Ol’ga A, Kolobov Y, Ligachev A (2012) Femtosecond laser color marking of metal and semiconductor surfaces. Applied Physics A 107:301–305CrossRefGoogle Scholar
  105. 105.
    Long J, Fan P, Zhong M, Zhang H, Xie Y, Lin C (2014) Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures. Appl Surf Sci 311:461–467CrossRefGoogle Scholar
  106. 106.
    Ahsan M, Lee M (2013) Colorizing mechanism of brass surface by femtosecond laser induced microstructures. Optik-International Journal for Light and Electron Optics 124:3631–3635CrossRefGoogle Scholar
  107. 107.
    Ou Z, Huang M, Zhao F (2014) Colorizing pure copper surface by ultrafast laser-induced near-subwavelength ripples. Opt Express 22:17254–17265CrossRefGoogle Scholar
  108. 108.
    Fan P, Zhong M, Li L, Schmitz P, Lin C, Long J, Zhang H (2014) Angle-independent colorization of copper surfaces by simultaneous generation of picosecond-laser-induced nanostructures and redeposited nanoparticles. J Appl Phys 115:124302CrossRefGoogle Scholar
  109. 109.
    Hyun J, Kang T, Baek H, Kim D, Yi G (2015) Nanoscale single-element color filters. Nano Lett 15:5938–5943CrossRefGoogle Scholar
  110. 110.
    Miyazaki H, Kurokawa Y (2006) Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys Rev Lett 96:097401CrossRefGoogle Scholar
  111. 111.
    Xu T, Wu Y, Luo X, Guo L (2010) Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat Commun 1:59Google Scholar
  112. 112.
    Yoon Y, Lee S (2010) Transmission type color filter incorporating a silver film based etalon. Opt Express 18:5344–5349CrossRefGoogle Scholar
  113. 113.
    Park C, Shrestha V, Lee S, Kim E, Choi D (2015) Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay. Scientific reports 5:8467CrossRefGoogle Scholar
  114. 114.
    Kedawat G, Kumar P, Vijay Y, Gupta B (2015) Fabrication of highly efficient resonant structure assisted ultrathin artificially stacked Ag/ZnS/Ag multilayer films for color filter applications. J Mater Chem C 3:674CrossRefGoogle Scholar
  115. 115.
    Mao K, Shen W, Yang C, Fang X, Yuan W, Zhang Y, Liu X (2016) Angle insensitive color filters in transmission covering the visible region. Scientific reports 6:19289CrossRefGoogle Scholar
  116. 116.
    Li Z, Butun S, Aydin K (2015) Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photonics 2:183–188CrossRefGoogle Scholar
  117. 117.
    Kwon H, Kim S (2015) Chemically tunable, biocompatible, and cost-effective metal–insulator–metal resonators using silk protein and ultrathin silver films. ACS Photonics 2:1675–1680CrossRefGoogle Scholar
  118. 118.
    Mirshafieyan S, Luk T, Guo J (2016) Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms. Optical Materials Express 6:1032–1042CrossRefGoogle Scholar
  119. 119.
    Wu Y, Hollowell A, Zhang C, Guo L (2013) Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit. Scientific reports 3:1194CrossRefGoogle Scholar
  120. 120.
    Aieta F, Genevet P, Kats M, Yu N, Blanchard R, Gaburro Z, Capasso F (2012) Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 12:4932–4936CrossRefGoogle Scholar
  121. 121.
    Hedayati MK, Javaherirahim M, Mozooni B, Abdelaziz R, Tavassolizadeh A, Chakravadhanula VSK, Zaporojtchenko V, Strunkus T, Faupel F, Elbahri M (2011) Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv Mater 23(45):5410–5414CrossRefGoogle Scholar
  122. 122.
    Zhao Y, Alù A (2011) Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys Rev B 84:205428CrossRefGoogle Scholar
  123. 123.
    Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K, Qiu C, Li J (2013) Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 4:2808Google Scholar
  124. 124.
    Genevet P, Yu N, Aieta F, Lin J, Kats M, Blanchard R, Scully M, Gaburro Z, Capasso F (2012) Applied physics letters. Ultra-thin plasmonic optical vortex plate based on phase discontinuities 100:013101Google Scholar
  125. 125.
    Ellenbogen T, Seo K, Crozier K (2012) Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett 12:1026–1031CrossRefGoogle Scholar
  126. 126.
    Olson JMA, Liu L, Chang W, Foerster B, King N, Knight M, Nordlander P, Halas N, Link S (2014) Vivid, full-color aluminum plasmonic pixels. Proc Natl Acad Sci 111:14348–14353CrossRefGoogle Scholar
  127. 127.
    Olson J, Manjavacas A, Basu T, Huang D, Schlather A, Zheng B, Halas N, Nordlander P, Link S (2016) High chromaticity aluminum plasmonic pixels for active liquid crystal displays. ACS Nano 10:1108–1117CrossRefGoogle Scholar
  128. 128.
    Kumar K, Duan H, Hegde R, Koh S, Wei J, Yang J (2012) Printing colour at the optical diffraction limit. Nat Nanotechnol 7:557–561CrossRefGoogle Scholar
  129. 129.
    Lee S, Forestiere C, Pasquale A, Trevino J, Walsh G, Galli P, Romagnoli M, Dal Negro L (2011) Plasmon-enhanced structural coloration of metal films with isotropic pinwheel nanoparticle arrays. Opt Express 19:23818–23830CrossRefGoogle Scholar
  130. 130.
    Roberts A, Pors A, Albrektsen O, Bozhevolnyi S (2014) Subwavelength plasmonic color printing protected for ambient use. Nano Lett 14:783–787CrossRefGoogle Scholar
  131. 131.
    Si G, Zhao Y, Lv J, Lu M, Wang F, Liu H, Xiang N, Huang T, Danner A, Teng J, Liu Y (2013) Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. Nanoscale 5:6243–6248CrossRefGoogle Scholar
  132. 132.
    Clausen J, Højlund-Nielsen E, Christiansen A, Yazdi S, Grajower M, Taha H, Levy U, Kristensen A, Mortensen N (2014) Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett 14:4499–4504CrossRefGoogle Scholar
  133. 133.
    Tan S, Zhang L, Zhu D, Goh X, Wang Y, Kumar K, Qiu C, Yang J (2014) Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett 14:4023–4029CrossRefGoogle Scholar
  134. 134.
    Yang C, Shen W, Zhang Y, Peng H, Zhang X, Liu X (2014) Design and simulation of omnidirectional reflective color filters based on metal-dielectric-metal structure. Opt Express 22:11384–11391CrossRefGoogle Scholar
  135. 135.
    Goh X, Zheng Y, Tan S, Zhang L, Kumar K, Qiu C, Yang J (2014) Three-dimensional plasmonic stereoscopic prints in full colour. Nat Commun 5:5361CrossRefGoogle Scholar
  136. 136.
    Khorasaninejad M, Raeis-Zadeh S, Amarloo H, Abedzadeh N, Safavi-Naeini S, Saini S (2013) Colorimetric sensors using nano-patch surface plasmon resonators. Nanotechnology 24:355501CrossRefGoogle Scholar
  137. 137.
    Liu Z, Liu G, Liu X, Huang S, Wang Y, Pan P, Liu M (2015) Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity. Nanotechnology 26:235702CrossRefGoogle Scholar
  138. 138.
    Zhu X, Vannahme C, Højlund-Nielsen E, Mortensen N, Kristensen A (2016) Plasmonic colour laser printing. Nat Nanotechnol 11:325–329CrossRefGoogle Scholar
  139. 139.
    Cheng F, Gao J, Luk T, Yang X (2015) Structural color printing based on plasmonic metasurfaces of perfect light absorption. Scientific reports 5:11045CrossRefGoogle Scholar
  140. 140.
    L. Wang, R. Ng, S. Safari Dinachali, M. Jalali, Y. Yu and J. Yang (2016) Large area plasmonic color palettes with expanded gamut using colloidal self-assembly. ACS PhotonicsGoogle Scholar
  141. 141.
    Helgert C, Rockstuhl C, Etrich C, Menzel C, Kley E, Tünnermann A, Lederer F, Pertsch T (2009) Effective properties of amorphous metamaterials. Phys Rev B 79:233107CrossRefGoogle Scholar
  142. 142.
    Rockstuhl C, Scharf T (2013) Amorphous Nanophotonics. Springer Science & Business Media, New YorkCrossRefGoogle Scholar
  143. 143.
    Kussow A, Akyurtlu A, Angkawisittpan N (2008) Optically isotropic negative index of refraction metamaterial. Phys Status Solidi B 245:992–997CrossRefGoogle Scholar
  144. 144.
    Pakizeh T, Dmitriev A, Abrishamian M, Granpayeh N, Käll M (2008) Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches. JOSA B 25:659–667CrossRefGoogle Scholar
  145. 145.
    Jelınek L, Machac J, Zehentner J (2006) A magnetic metamaterial composed of randomly oriented SRRs. PIERS Online 2:624–627CrossRefGoogle Scholar
  146. 146.
    Hägglund C, Zeltzer G, Ruiz R, Thomann I, Lee H, Brongersma M, Bent S (2013) Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption. Nano Lett 13:3352–3357CrossRefGoogle Scholar
  147. 147.
    Hedayati MK, Zillohu AU, Strunskus T, Faupel F, Elbahri M (2014) Plasmonic tunable metamaterial absorber as ultraviolet protection film. Appl Phys Lett 104(4):041103CrossRefGoogle Scholar
  148. 148.
    Yan M, Dai J, Qiu M (2014) Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles. J Opt 16:025002CrossRefGoogle Scholar
  149. 149.
    Liu K, Zeng X, Jiang S, Ji D, Song H, Zhang N, Gan Q (2014) A large-scale lithography-free metasurface with spectrally tunable super absorption. Nanoscale 6:5599–5605CrossRefGoogle Scholar
  150. 150.
    Hedayati M, Fahr S, Etrich C, Faupel F, Rockstuhl C, Elbahri M (2014) The hybrid concept for realization of an ultra-thin plasmonic metamaterial antireflection coating and plasmonic rainbow. Nanoscale 6(11):6037–6045CrossRefGoogle Scholar
  151. 151.
    Yue W, Li Y, Wang C, Yao Z, Lee S, Kim N (2015) Color filters based on a nanoporous Al-AAO resonator featuring structure tolerant color saturation. Opt Express 23:27474–27483CrossRefGoogle Scholar
  152. 152.
    Ye M, Sun L, Hu X, Shi B, Zeng B, Wang L, Zhao J, Yang S, Tai R, Fecht H, Jiang J, Zhang D (2015) Angle-insensitive plasmonic color filters with randomly distributed silver nanodisks. Opt Lett 40:4979–4982CrossRefGoogle Scholar
  153. 153.
    Zhang X, Hu A, Zhang T, Lei W, Xue X, Zhou Y, Duley W (2011) Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties. ACS Nano 5:9082–9092CrossRefGoogle Scholar
  154. 154.
    Ghosh S, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862CrossRefGoogle Scholar
  155. 155.
    Su K, Wei Q, Zhang X, Mock J, Smith D, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3:1087–1090CrossRefGoogle Scholar
  156. 156.
    Sönnichsen C, Reinhard B, Liphardt J, Alivisatos A (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23:741–745CrossRefGoogle Scholar
  157. 157.
    Shaltout A, Liu J, Shalaev V, Kildishev A (2014) Optically active metasurface with non-chiral plasmonic nanoantennas. Nano Lett 14:4426–4431CrossRefGoogle Scholar
  158. 158.
    Hedayati MK, Javaheri M, Zillohu AU, El-Khozondar HJ, Bawa’aneh MSLA, Faupel F, Elbahri M (2014) Photo-driven super absorber as an active metamaterial. Advanced Optical Materials 2(8):705–710CrossRefGoogle Scholar
  159. 159.
    Yoo M, Lim S (2014) Active metasurface for controlling reflection and absorption properties. Appl Phys Express 7:112204CrossRefGoogle Scholar
  160. 160.
    Chen H, Padilla W, Zide J, Gossard A, Taylor A, Averitt R (2006) Active terahertz metamaterial devices. Nature 444:597–600CrossRefGoogle Scholar
  161. 161.
    Si G, Zhao Y, Leong E, Liu Y (2014) Liquid-crystal-enabled active plasmonics: a review. Materials 7:1296–1317CrossRefGoogle Scholar
  162. 162.
    Xu T, Walter E, Agrawal A, Bohn C, Velmurugan J, Zhu W, Lezec H, Talin A (2016) High-contrast and fast electrochromic switching enabled by plasmonics. Nat Commun 7:10479CrossRefGoogle Scholar
  163. 163.
    Wang G, Chen X, Liu S, Wong C, Chu S (2016) Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano 10:1788–1794CrossRefGoogle Scholar
  164. 164.
    Jiang X, Leong E, Liu Y, Si G (2016) Tuning plasmon resonance in depth-variant plasmonic nanostructures. Mater Des 96:64–67CrossRefGoogle Scholar
  165. 165.
    Liu Y, Si G, Leong E, Xiang N, Danner A, Teng J (2012) Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Adv Mater 24:OP131–OP135Google Scholar
  166. 166.
    Liu Y, Si G, Leong E, Wang B, Danner A, Yuan X, Teng J (2012) Optically tunable plasmonic color filters. Applied Physics A 107:49–54CrossRefGoogle Scholar
  167. 167.
    Franklin D, Chen Y, Vazquez-Guardado A, Modak S, Boroumand J, Xu D, Wu S, Chanda D (2015) Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat Commun 6:7337CrossRefGoogle Scholar
  168. 168.
    Wang H, Tam F, Grady N, Halas N (2005) Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance. J Phys Chem B 109:18218–18222CrossRefGoogle Scholar
  169. 169.
    Chan G, Zhao J, Hicks E, Schatz G, Van Duyne R (2007) Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett 7:1947–1952CrossRefGoogle Scholar
  170. 170.
    Henglein A (1998) Colloidal silver nanoparticles: photochemical preparation and interaction with O2, CCl4, and some metal ions. Chem Mater 10:444–450CrossRefGoogle Scholar
  171. 171.
    McMahon M, Lopez R, Meyer H III, Feldman L, Haglund R Jr (2005) Rapid tarnishing of silver nanoparticles in ambient laboratory air. Applied Physics B 80:915–921CrossRefGoogle Scholar
  172. 172.
    Schwab P, Moosmann C, Dopf K, Eisler H (2015) Oxide mediated spectral shifting in aluminum resonant optical antennas. Opt Express 23:26533–26543CrossRefGoogle Scholar
  173. 173.
    Knight M, King N, Liu L, Everitt H, Nordlander P, Halas N (2013) Aluminum for plasmonics. ACS Nano 8:834–840CrossRefGoogle Scholar
  174. 174.
    Langhammer C, Schwind M, Kasemo B, Zoric I (2008) Localized surface plasmon resonances in aluminum nanodisks. Nano Lett 8:1461–1471CrossRefGoogle Scholar
  175. 175.
    E. C. J. M. T. T. L. H. Z. M. N. T. L. P. N. A. J. M. N. A. a. K. A Højlund-Nielsen (2016) Plasmonic colors: toward mass production of metasurfaces, Adv Mater TechnolGoogle Scholar
  176. 176.
    Schulz U, Wachtendorf V, Klimmasch T, Alers P (2001) The influence of weathering on scratches and on scratch and mar resistance of automotive coatings. Progress in Organic Coatings 42:38–48CrossRefGoogle Scholar
  177. 177.
    Jardret V, Lucas B, Oliver W, Ramamurthy A (2000) Scratch durability of automotive clear coatings: a quantitative, reliable and robust methodology. J Coatings Technol 72:79–88CrossRefGoogle Scholar
  178. 178.
    M. Mohseni, B. Ramezanzadeh and H. Yari Effects of environmental conditions on degradation of automotive coatings. In: New trends and developments in automotive industry. INTECH Open Access Publisher, 2011, pp. 267–296Google Scholar
  179. 179.
    Synnefa A, Santamouris M, Apostolakis K (2007) On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Sol Energy 81:488–497CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of EngineeringChristian-Albrechts-Universität zu KielKielGermany
  2. 2.Nanochemistry and NanoengineeringHelmholtz-Zentrum GeesthachtGeesthachtGermany
  3. 3.Nanochemistry and Nanoengineering, School of Chemical TechnologyAalto UniversityAaltoFinland
  4. 4.Department of Micro- and NanotechnologyTechnical University of DenmarkLyngbyDenmark

Personalised recommendations