Plasmonics

, Volume 12, Issue 5, pp 1425–1430 | Cite as

Efficient Unidirectional Launching of Surface Plasmons by Multi-Groove Structures

Article
  • 226 Downloads

Abstract

Efficiency is an important criterion in developing a practical surface-plasmon-polariton (SPP) unidirectional launcher. In this paper, we show that multi-groove structures can efficiently launch SPPs by numerically optimizing structural parameters and normal incident light. Experimentally, a high efficiency of 58.4 % is demonstrated in a six-groove structure with a lateral dimension of 3.9 μm. For a three-groove structure with even smaller lateral dimension of 1.35 μm, the efficiency presents a broadband response, which remains higher than 42 % from 720 to 860 nm. The proposed multi-groove structures with high SPP launching efficiency and small size exhibit potential in highly integrated plasmonic circuits.

Keywords

Surface plasmons Unidirectional launcher and decoupler Launching efficiency Integrated optics devices 

References

  1. 1.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  3. 3.
    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photon 4:83–91CrossRefGoogle Scholar
  4. 4.
    López-Tejeira F, Rodrigo SG, Martín-Moreno L, García-Vidal FJ, Devaux E, Ebbesen TW, Krenn JR, Radko IP, Bozhevolnyi SI, González MU, Weeber JC, Dereux A (2007) Efficient unidirectional nanoslit couplers for surface plasmons. Nat Phys 3:324–328CrossRefGoogle Scholar
  5. 5.
    Lerosey G, Pile DFP, Matheu P, Bartal G, Zhang X (2009) Controlling the phase and amplitude of plasmon sources at a subwavelength scale. Nano Lett 9:327–331CrossRefGoogle Scholar
  6. 6.
    Wang B, Aigouy L, Bourhis E, Gierak J, Hugonin JP, Lalanne P (2009) Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence. Appl Phys Lett 94:011114CrossRefGoogle Scholar
  7. 7.
    Radko IP, Bozhevolnyi SI, Brucoli G, Martín-Moreno L, García-Vidal FJ, Boltasseva A (2009) Efficient unidirectional ridge excitation of surface plasmons. Opt Express 17:7228–7232CrossRefGoogle Scholar
  8. 8.
    Chen JJ, Li Z, Yue S, Gong QH (2010) Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit. Appl Phys Lett 97:041113CrossRefGoogle Scholar
  9. 9.
    Baron A, Devaux E, Rodier JC, Hugonin JP, Rousseau E, Genet C, Ebbesen TW, Lalanne P (2011) Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons. Nano Lett 11:4207–4212CrossRefGoogle Scholar
  10. 10.
    Liu JSQ, Pala RA, Afshinmanesh F, Cai WS, Brongersma ML (2011) A submicron plasmonic dichroic splitter. Nat Commun 2:525CrossRefGoogle Scholar
  11. 11.
    Li XW, Tan QF, Bai BF, Jin GF (2011) Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit. Appl Phys Lett 98:251109CrossRefGoogle Scholar
  12. 12.
    Liu Y, Palomba S, Park Y, Zentgraf T, Yin X, Zhang X (2012) Compact magnetic antennas for directional excitation of surface plasmons. Nano Lett 12:4853–4858CrossRefGoogle Scholar
  13. 13.
    Sonnefraud Y, Kerman S, Martino GD, Lei DY, Maier SA (2012) Directional excitation of surface plasmon polaritons via nanoslits under varied incidence observed using leakage radiation microscopy. Opt Express 20:4893–4902CrossRefGoogle Scholar
  14. 14.
    Lin J, Mueller JPB, Wang Q, Yuan G, Antoniou N, Yuan XC, Capasso F (2013) Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340:331–334CrossRefGoogle Scholar
  15. 15.
    Rodríguez-Fortuño FJ, Marino G, Ginzburg P, O’Connor D, Martínez A, Wurtz GA, Zayats AV (2013) Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340:328–330CrossRefGoogle Scholar
  16. 16.
    Huang X, Brongersma ML (2013) Compact aperiodic metallic groove arrays for unidirectional launching of surface plasmons. Nano Lett 13:5420–5424CrossRefGoogle Scholar
  17. 17.
    Liao HM, Li Z, Chen JJ, Zhang X, Yue S, Gong QH (2013) A submicron broadband surface-plasmon-polariton unidirectional coupler. Sci Rep 3:1918CrossRefGoogle Scholar
  18. 18.
    Yang J, Xiao X, Hu C, Zhang WW, Zhou SX, Zhang JS (2014) Broadband surface plasmon polariton directional coupling via asymmetric optical slot nanoantenna pair. Nano Lett 14:704–709CrossRefGoogle Scholar
  19. 19.
    Lu F, Sun L, Wang J, Li K, Xu A (2014) Broad-angle and efficient unidirectional excitations of surface plasmons with dielectric-coated subwavelength metallic periodic nanoslits. Appl Phys Lett 105:091112CrossRefGoogle Scholar
  20. 20.
    Pors A, Nielsen MG, Bernardin T, Weeber JC, Bozhevolnyi SI (2014) Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light: Science & Applications 3:e197CrossRefGoogle Scholar
  21. 21.
    Li GY, Zhang JS (2014) Ultra-broadband and efficient surface plasmon polariton launching through metallic nanoslits of subwavelength period. Sci Rep 4:5914CrossRefGoogle Scholar
  22. 22.
    Yao WJ, Liu S, Liao HM, Li Z, Sun CW, Chen JJ, Gong QH (2015) Efficient directional excitation of surface plasmons by a single-element nanoantenna. Nano Lett 15:3115–3121CrossRefGoogle Scholar
  23. 23.
    Lalanne P, Hugonin JP, Rodier JC (2005) Theory of surface plasmon generation at nanoslit apertures. Phys Rev Lett 95:263902CrossRefGoogle Scholar
  24. 24.
    Lalanne P, Hugonin JP, Rodier JC (2006) Approximate model for surface-plasmon generation at slit apertures. J Opt Soc Am A 23:1608–1615CrossRefGoogle Scholar
  25. 25.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  26. 26.
    Gay G, Alloschery O, Viaris De Lesegno B, O’Dwyer C, Weiner J, Lezec HJ (2006) The optical response of nanostructured surfaces and the composite diffracted evanescent wave model. Nat Phys 2:262–267CrossRefGoogle Scholar
  27. 27.
    Nagpal P, Lindquist NC, SH O, Norris DJ (2009) Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325:594–597CrossRefGoogle Scholar
  28. 28.
    Zhu XL, Zhang Y, Zhang JS, Xu J, Ma Y, Li ZY, Yu DP (2010) Ultrafine and smooth full metal nanostructures for plasmonics. Adv Mater 22:4345–4349CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of PhysicsPeking UniversityBeijingChina
  2. 2.State Key Laboratory for Mesoscopic PhysicsPeking UniversityBeijingChina

Personalised recommendations