Skip to main content
Log in

Subwavelength Micro-Antenna for Achieving Slow Light at Microwave Wavelengths via Electromagnetically Induced Transparency in 2D Metamaterials

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a tunable slow light 2D metamaterial is presented and investigated. The metamaterial unit cell is composed of three metallic strips as radiative and non-radiative modes. Once introducing asymmetry, a transparency window induced by coupling between the dark and bright modes is observed. The transmission characteristics and the slow light properties of the metamaterial are verified by numerical simulation, which is in a good agreement with theoretical predictions. The impact of asymmetric parameter on transparency window is also investigated. Simulation results show the spectral properties and the group index of the proposed 2D metamaterial can be tunned by adjusting asymmetric structure parameter, temperature and also the metal used in the metamaterial. Furthermore, the electromagnetic field distributions, excited surface currents, induced electric dipole and quadruples, and slow light properties of the metamaterial are investigated in details as well as transmission spectral responses. The outstanding result is that, the 2D-metamaterial is in a high decrease of the group velocity and therefore slow light applications, because in the best state, the group velocity in our structure decreases by a factor of 221 at T=100 K using copper as metal in optimization asymmetric case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tsakmakidis KL, Boardman AD, Hess O (2007) Trapped rainbow storage of light in metamaterials. Nature 450:397–401

    Article  CAS  Google Scholar 

  2. Hau LV, Harris SE, Dutton Z, Behroozi CH (1999) Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397(594)

  3. Krauss TF (2008) Why do we need slow light?, Nat. Photonics 2:448

    Article  CAS  Google Scholar 

  4. Vafapour Z (2016) Near-infrared biosensor based on classical electromagnetically induced reflectance (Cl-EIR) in a planar complementary metamaterial, Optics Communication, Manuscript Number: MB-1316, Under Review

  5. Liu C, Dutton Z, Behroozi CH, Hau LV (2001) Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409(6819):490–493

    Article  CAS  Google Scholar 

  6. Bigelow MS, Lepeshkin NN, Boy RW (2003) Superluminal and slow light propagation in a room-temperature solid. Science 301:200

    Article  CAS  Google Scholar 

  7. Okawachi Y, Bigelow MS, Sharping JE, Zhu Z, Schweinsberg A, Gauthier DJ, Boyd RW, Gaeta AL (2005) Tunable all-optical delays via Brillouin slow light in an optical fiber, phys. Rev. Lett. 94(153902)

  8. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780–2

    Article  CAS  Google Scholar 

  9. Boyd RW, Gauthier DJ, Gaeta AL (2006) Applications of slow light in telecommunications. Opt Photonics News 17(4):18–23

    Article  Google Scholar 

  10. Cardenas J, Foster MA, Sherwood-Droz N, Poitras CB, Lira HLR, Zhang B, Gaeta AL, Khurgin JB, Morton P, Lipson M (2010) Wide-bandwidth continuously tunable optical delay line using silicon microring resonators. OPTICS EXPRESS 18(25):26525

    Article  CAS  Google Scholar 

  11. Khurgin JB (2005) Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis. JOSA B 22(5):1062–1074

    Article  CAS  Google Scholar 

  12. Lauprṫre T, Ruggiero J, Ghosh R, Bretenaker F, Goldfarb F (2009) Observation of electromagnetically induced transparency and slow light in the dark state–bright state basis,. Opt Express 17(22):19444–19450

    Article  Google Scholar 

  13. Zhang L, Tassin P, Koschny T h, Kurter C, Anlage SM, Soukoulis CM (2010) Large group delay in a microwave metamaterial analog of electromagnetically induced transparency. Appl Phys Lett 97(241904). doi:10.1063/1.3525925

  14. He XJ, Li TY, Wang L, Wang JM, Tian XH, Jiang JX, Geng ZX (2014) Electromagnetically induced transparency and slow light in a simple complementary metamaterial constructed by two bright slot-structures. Appl Phys A 16(2):799–804

    Article  Google Scholar 

  15. Vafapour Z, Zakery A (2015) New approach of plasmonically induced reflectance in a planar metamaterial for plasmonic sensing applications. Plasmonics 11(2):609–618

    Article  Google Scholar 

  16. Khurgin JB (2010) Slow light in various media: a tutorial. Adv Opt Photon 2:287–318

    Article  Google Scholar 

  17. Tassin P (2015) Slow-Light Metamaterials. Nanoscale Quantum Optics:77

  18. Parvinnezhad-Hokmabadi M, Kim J-H, Rivera E, Kung P, Kim SM (2015) Impact of substrate and bright resonances on group velocity in metamaterial without dark resonator. Sci Rep 5(14373). doi:10.1038/srep14373

  19. Vafapour Z, Alaei H (2016) Achieving a high Q-factor and tunable slow-light via classical electromagnetically induced transparency (Cl-EIT) in metamaterials, Plasmonics, doi:10.1007/s11468-016-0288-0

  20. Vafapour Z, Forouzeshfard MR (2016) Disappearance of plasmonically induced reflectance by breaking symmetry in metamaterials, Plasmonics, Pending for revision

  21. Qin G, Jose R, Ohishi Y (2007) Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation. J Appl Phys 101(9):093109

    Article  Google Scholar 

  22. Song KY, Herrez MG, Thvenaz L (2005) Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Opt Express 13(1):82–88

    Article  Google Scholar 

  23. Palinginis P, Sedgwick F, Crankshaw S, Moewe M, Chang-Hasnain C (2005) Room temperature slow light in a quantum-well waveguide via coherent population oscillation. Opt Express 13(24):9909–9915

    Article  Google Scholar 

  24. Lin CX, Zhang W, Huang YD, Peng JD (2007) Zero dispersion slow light with low leakage loss in defect Bragg fiber. Appl Phys Lett 90(3):031109

    Article  Google Scholar 

  25. Krauss TF (2007) Slow light in photonic crystal waveguides. J Phys D Appl Phys 40(9):2666–2670

    Article  CAS  Google Scholar 

  26. Kocaman S, Yang X, McMillan JF, Yu MB, Kwong DL, Wong CW (2010) Observations of temporal group delays in slow-light multiple coupled photonic crystal cavities. Appl Phys Lett 96(22):221111

    Article  Google Scholar 

  27. Karalis A, Lidorikis E, Ibanescu M, Joannopoulos JD, Soljaci M (2005) Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air. Phys Rev Lett 95(6):063901

    Article  Google Scholar 

  28. Boller KJ, Imamoglu A, Harris SE (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66:2593–2596

    Article  CAS  Google Scholar 

  29. Fleischhauer M, Imamoglu A, Marangos JP (2005) Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys 77:633–673

    Article  CAS  Google Scholar 

  30. Alzetta G, Gozzini A, Moi L, Oriols G (1976) An experimental method for the observation of R. F. transition and laser beat resonances in oriented Na vapor. Nuovo Cimento B 36:5

    Article  Google Scholar 

  31. Parvinnezad-Hokmabadi M, Philip E, Rivera E, Kung P, Kim SM (2015) Plasmon induced transparency by hybridizing concentric-twisted double split ring resonators. Sci Rep 5(15735). doi:10.1038/srep15735

  32. Liu N, Langguth L, Weiss T, Kastel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8: 758

    Article  CAS  Google Scholar 

  33. Vafapour Z, Zakery A (2015) New regime of plasmonically induced transparency. Plasmonics 10(6):1809–1815

    Article  Google Scholar 

  34. Tassin P, Koschny T, Soukoulis CM (2014) Field enhancement with classical electromagnetically induced transparency, nonlinear. Tunable and Active Metamaterials 200:303–319. doi:10.1007/978-3-319-08386-5-15

    Google Scholar 

  35. Chiam SY, Singh R, Rockstuhl C, Lederer F, Zhang W, Bettiol AA (2009) Analogue of electromagnetically induced transparency in a terahertz metamaterial. Phys Rev B 80(15):153103

    Article  Google Scholar 

  36. Singh R, Al-Naib IAI, Yang Y, Chowdhury DR, Cao W, Rockstuhl C, Ozaki T, Morandotti R, Zhang W (2011) Observing metamaterial induced transparency in individual Fano resonators with broken symmetry. Appl Phys Lett 99(20):201107

    Article  Google Scholar 

  37. Liu X, Gu J, Singh R, Ma Y, Zhu J, Tian Z, He M, Han J, Zhang W (2012) Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode. Appl Phys Lett 100(13):131101–4

    Article  Google Scholar 

  38. Li Z, Ma Y, Huang R, Singh R, Gu J, Tian Z, Han J, Zhang W (2011) Manipulating the plasmon-induced transparency in terahertz metamaterials. Opt Express 19(9):8912–8919

    Article  CAS  Google Scholar 

  39. Weiss T, Granet G, Gippius NA, Tikhodeev SG, Giessen H (2009) Matched coordinates and adaptive spatial resolution in the fourier modal method. Opt Express 17(10):8051–8061

    Article  CAS  Google Scholar 

  40. Tikhodeev SG, Yablonskii AL, Muljarov EA, Gippius NA, Ishihara T (2002) Quasiguided modes and optical properties of photonic crystal slabs. Phys Rev B 66(045102)

  41. Stephen DG (2011) Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. Synthesis Lect Comput Electromagn 6(1):1–250. doi:10.2200/S00316ED1V01Y201012CEM027

    Article  Google Scholar 

  42. Cai W, Shalaev V (2010) Optical metamaterials fundamentals and application, Springer. London: Springer New York Dordrecht Heidelberg:157

  43. Burresi M, Oosten DV, Kampfrath T, Schoenmaker H, Heideman R, Leinse A, Kuipers L (2009) Probing the magnetic field of light at optical frequencies. Science 326:550

    Article  CAS  Google Scholar 

  44. Ashcroft NW, Mermin ND (1976) Solid state physics, (Holt Rineheart and Winston)

  45. Alici KB, Ozbay E (2009) Low temperature behavior of magnetic metamaterial elements. New J Phys 11 (043015)

  46. Chen X, Grzegorczyk TM, Wu B -I, Pacheco J, Komg JA (2004) Robust method to retrieve the constitutive effective parameters of metamaterials. Physics Rev E 70(016608)

  47. Zhang F, Potet S, Carbonell J, Lheurette E, Vanbesien O, Zhao X, Lippens D (2008) Negative-zero-positive refractive index in a prism-like omega-type metamaterial. IEEE Trans Microwave Theory Tech 56(11):2566–2573

    Article  Google Scholar 

Download references

Acknowledgments

Zohreh Vafapour would like to express her special thanks to Dr. Jacob B. Khurgin from The Johns Hopkins University for his useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Vafapour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vafapour, Z., Alaei, H. Subwavelength Micro-Antenna for Achieving Slow Light at Microwave Wavelengths via Electromagnetically Induced Transparency in 2D Metamaterials. Plasmonics 12, 1343–1352 (2017). https://doi.org/10.1007/s11468-016-0392-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0392-1

Keywords

Navigation