Skip to main content
Log in

Theoretical Modeling of Average Force Acted on Nano Plasma Spheres in Presence of Radiation of Long Wavelength Point Source

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Using the solutions of field equation, due to the electromagnetic wave scattering phenomena from a nano plasma sphere(NPS), the inserted force on nano plasma sphere is simulated. For this purpose, with using suitable Green’s function, the scattering phenomena of long wavelength electromagnetic waves from a nano plasma sphere will be investigated. A point electromagnetic source is considered in finite distance from the NPS. The computations will be generalized to two monopole point sources with the same strength but with opposite sign in two sides of sphere to simulating a NPS in presence of a plane electromagnetic wave. The resonance frequency and pattern scattering for these problems will be presented. The graphs of variations of inserted force with respect to wave frequency and geometrical dimension variations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bordag M, Mohideen U, Mostepanenko V M (2001). Phys Rep 353:1

    Article  Google Scholar 

  2. Harris B W, Chen F, Mohideen U (2000). Phys Rev A 62:052109

    Article  Google Scholar 

  3. Chen F et al (2004). Phys Rev A 69:022117

    Article  Google Scholar 

  4. Bressi G et al (2002). Phys Rev Lett 88:041804

    Article  CAS  Google Scholar 

  5. Chen F et al (2002). Phys Rev Lett 101801:88

    Google Scholar 

  6. Decca R S et al (2003). Phys Rev D 68:116003

    Article  Google Scholar 

  7. Chan H B et al (2001). Science 291:1941

    Article  CAS  Google Scholar 

  8. Braga PC, Ricci D (2004) Atomic force microscopy: biomedical methods and applications. Humana Press, Totowa, N.J.

    Google Scholar 

  9. Morris V J, Kirby A R, Gunning A P (1999) Atomic force microscopy for biologists. Imperial College Press, London

    Book  Google Scholar 

  10. Novotny L, Bian R, Xie X (1997). Phys Rev Lett 79:645

    Article  CAS  Google Scholar 

  11. Grier D (2003). Nature 424:810

    Article  CAS  Google Scholar 

  12. Volokitin A, Persson N (2007). Usp Fiz Nauk 177:921

    Article  Google Scholar 

  13. Henkel C, Joulain K, Mulet J, Greffet J (2002). J Opt A 4:S109

    Article  Google Scholar 

  14. Antezza M, Pitaevskii L, Stringeri S, Svetovoy V (2008). Phys Rev A 77:022901

    Article  Google Scholar 

  15. Buhmann S, Scheel S (2007). Prog Quant Elect 31:51

    Article  Google Scholar 

  16. Abraham Ekeroth R M, Lester M F (2015) Optical forces on silver homogeneous nanotubes: study of shell interaction, Plasmonic

  17. Klimov V V, Lambrecht A (2009) Van der waals forces between plasmonic nanoparticles. Plasmonics 4:31–36

    Article  CAS  Google Scholar 

  18. Xiaodong W, Kai X, Changjun M, Qinqian Z, Yi H, Yuan X-C (2012) Theoretical and experimental study of surface plasmon radiation force on micrometer-sized spheres, Plasmonics

  19. Ashok K (2013) Ponderomotive self-focusing of surface plasma wave. Plasmonics 8:1135–1139

    Article  Google Scholar 

  20. Alexander S S, Sukhov V (2012). Plasmonic nanostructures as accelerators for nanoparticles: Optical Nanocannon Plasmonics

  21. Bobrinetskiia I I, Morozova R A, Chaplyginb E Yu On the atomic-force microscopy of biological nanoparticles in air. Nanotechnology 47(13):1699–1702

  22. Zhu B, Ren G, Yang Y et al (2015) Field enhancement and gradient force in the graphene-coated nanowire pairs. Plasmonics 10:839

    Article  CAS  Google Scholar 

  23. Zemnek P, JonÅ A, LiÅka M (2002) Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave. J Opt Soc Am A 19(5):1025–1034

    Article  Google Scholar 

  24. Åiler M, Zemnek P (2007) Optical forces acting on a nanoparticle placed into an interference evanescent field. Opt Commun 275(2):409–420

    Article  Google Scholar 

  25. Johnson B R (1996) Light scattering by a multilayer sphere . Appl Opt 35(18):3286–3296

    Article  CAS  Google Scholar 

  26. Haiying L, Zhensen W, Mao S, Huang C (2010) Scattering of Hermite-Gaussian beam by plasma sphere. ICMMT Proceedings, pp 1405–1408

  27. Wu Z S, Wang Y P (1991) Electromagnetic scattering for multilayered sphere: Recursive algorithms. Radio Sci 26:1393–1401

    Article  Google Scholar 

  28. Geng Y-L, Wu X-B, Li L-W (2005) Characterization of electromagnetic scattering by a plasma anisotropic spherical shell. IEEE Antennas Wirel Propag Lett 3(1):100–103

    Article  Google Scholar 

  29. Wong K-L, Chen H-T (1992) Electromagnetic scattering by a uniaxially anisotropic sphere. Inst Elect Eng 139(4):314–318

    Google Scholar 

  30. Mitri F G (2011) Electromagnetic wave scattering of a higher-order Bessel vortex beam by a dielectric sphere. IEEE Trans Antennas Propag 59:4375–4379

    Article  Google Scholar 

  31. Shang Q C, Wu Z S, Qu T, Li Z J (2015) Rayleigh model for electromagnetic scattering from a chiral sphere. Procedia Engineering 102:1951

    Article  Google Scholar 

  32. Daran F Lab. de Phys. des Interactions Ondes-Matiere, CNRS, Talence, France; Vigneras-Lefebvre, V.; Parneix, J.P., Modeling of electromagnetic waves scattered by a system of spherical particles. Magnetics, IEEE (May 1995) Transactions on, Volume 31, Issue 3 (May 1995)

  33. Geng Y L, Wu X B, Li L W (2003) Analysis of electromagnetic scattering by a plasma anisotropic sphere. Radio Sci 38(6): 1104

    Article  Google Scholar 

  34. Wait J R (1961) Some boundary value problems involving plasma media. J Res NBS 65B:137–150

    Google Scholar 

  35. Murphy J D, Moser P J, Nagl A, Uberall H (1980) A surface-wave interpretation for the resonances of a dielectric sphere. IEEE Trans Antennas Propag 28(6):924–927

    Article  Google Scholar 

  36. Arlt J, Dholakia K, Soneson J, Wright EM (2001) Optical dipole traps and atomic waveguides based on Bessel light beams. Phys Rev A 63(6):063602

    Article  Google Scholar 

  37. Battagliaa A, Tanellic S, Kobayashid S, Zrnice D, Hoganf R J (2010) Clemens Simmer multiple-scattering in radar systems. Quant Spectrosc Radiat Transf 111(6):917–947

    Article  Google Scholar 

  38. Newton RG (1966) Scattering theory of waves and particles. McGraw Hill

  39. Cecil DJ (2011) Relating passive 37-GHz scattering to radar profiles in strong convection. J Appl Meteor Climatol 50: 233–240

    Article  Google Scholar 

  40. Sukharevsky OI (2014) Electromagnetic wave scattering by aerial and ground radar objects. CRC Press

  41. Van de Hulst HC (1957) Light scattering by small particles. Wiley, New York

    Google Scholar 

  42. Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic, New York

    Google Scholar 

  43. Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J et al (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  44. Willets K A, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Ann RevPhys Chem 58:267–297

    Article  CAS  Google Scholar 

  45. Zhao J, Zhang X, Yonzon C R, Haes A J, Van Duyne RP (2006) Localized surface plasmon resonance biosensors. Nanomedicine 1:219–228

    Article  CAS  Google Scholar 

  46. Green M A, Pillai S (2012) Harnessing plasmonics for solar cells. Nat Photon 6:130–132

    Article  CAS  Google Scholar 

  47. Alexandrov A F, Bogdankevich L S, Rukhadze A A (1984) Principles of plasma electrodynamics. Springer, Berlin Heidelberg

    Book  Google Scholar 

  48. Krall NA, Trivelpiece AW (1973) Principles of plasma physics. McGraw–Hill, New York

    Google Scholar 

  49. Chen F, Mohideen U, Klimchitskaya G L, Mostepanenko V M Investigation of the Casimir force between metal and semiconductor test bodies, Moscow

  50. Roters A, Johannsmann D (1996) Distance-dependent noise measurements in scanning force microscopy. J Phys: Condens Matter 8:7561–7577

    CAS  Google Scholar 

  51. Radmacher M, Tillmann R W, Gaub H E (1993) Imaging viscoelasticity by force modulation with the atomic force microscope. J Biophysical Society 64:735–742

    Article  CAS  Google Scholar 

  52. Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New York

    Google Scholar 

  53. Arfken GB, Weber HJ (1995) Mathematical methods for physicists, 4th edn. Academic Press, San Diego

    Google Scholar 

  54. Colin S, Durt T, Willox R (2016) Crucial tests of macrorealist and semiclassical gravity models with freely falling mesoscopic nanospheres. Phys Revs A 93:062102. Published 2 June

    Article  Google Scholar 

  55. Ahn S-H, Park W-H, Kim Z H (2007) Nano-optical investigation of enhanced field at gold nanosphere-gold plane junctions. Bull Korean Chem Soc 28(12)

  56. Lavenant H, Naletov V, Klein O, de Loubens G, Casado L, De Teresa J M (2014) Mechanical magnetometry of cobalt nanospheres deposited by focused electron beam at the tip of ultra-soft cantilevers. Nanofabrication 1(1)

  57. Schmid M, Tsakanikas S, Mangalgiri G, Andrae P, Song M, Yin G, Riedel W, Manley P (2005). Nano-optical concept design for light management SPIE Proceedings Vol. 9626

  58. Tamm IE (1979) Fundamentals of the theory of electricity. Mir, Moscow

    Google Scholar 

  59. Panofsky W K H, Phillips M (1962) Classical electricity and magnetism. Addison-Wesley, New York

    Google Scholar 

  60. Shneider MN, Pekker M (2016) Liquid dielectrics in an inhomogeneous pulsed electric field. IOP Publishing Ltd

  61. Ashkin A, Dziedzic JM (1987) Optical trapping and manipulation of viruses and bacteria. Science 235 (4795):1517

    Article  CAS  Google Scholar 

  62. Fulton R, Bishop AI, Shneider MN, Barker PF (2006) Controlling the motion of cold molecules with deep periodic optical potentials, Nature. Physics 2:465

    CAS  Google Scholar 

  63. Shneider MN, Barker PF, Gimelshein SF (2007) Molecular transport in pulsed optical lattices. Appl Phys A 89: 337

    Article  CAS  Google Scholar 

  64. Jackson J (1999) Classical electrodynamics, 3rd edn. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajijamali-Arani, Z., Jazi, B. & Jahanbakht, S. Theoretical Modeling of Average Force Acted on Nano Plasma Spheres in Presence of Radiation of Long Wavelength Point Source. Plasmonics 12, 1245–1255 (2017). https://doi.org/10.1007/s11468-016-0382-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0382-3

Keywords

Navigation