Skip to main content
Log in

Synthesis and Optical Properties of Highly Stabilized Peptide-Coated Gold Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The interaction between peptide and gold nanoparticle surfaces has been increasingly of interest for bionanotechnology applications. To fully understand how to control such interactions, we have studied the optical properties of peptide-modified gold nanoparticles. However, the impacts of peptide binding motif upon the surface characteristics and physicochemical properties of nanoparticles remain poorly understood. Here, we have prepared sodium citrate-stabilized gold nanoparticles and coated with peptide IVD (ID3). These nanomaterials were characterized by UV-visible, transmission electron microscopy (TEM), and z-potential measurement. The results indicate that gold-peptide interface is generated using ID3 peptide and suggested that the reactivity of peptide is governed by the conformation of the bound peptide on the nanoparticle surface. The peptide-nanoparticle interactions could potentially be used to make specific functionality into the peptide capped nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Anal Bioanal Chem 391(3):943–950

    Article  CAS  Google Scholar 

  2. Dykman LA, Khlebtsov NG (2011) Acta Nat 3(2):34–55

    CAS  Google Scholar 

  3. Yeh YC, Creran B, Rotello VM (2012) Nanoscale 4(6):1871–1880

    Article  CAS  Google Scholar 

  4. Han M, Gao X, Su JZ, Nie S (2001) Nat Biotechnol 19(7):631–635

    Article  CAS  Google Scholar 

  5. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) J Am Chem Soc 128(6):2115–2120

    Article  CAS  Google Scholar 

  6. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) Nature 382(6592):607–609

    Article  CAS  Google Scholar 

  7. Moreno-Manas M, Pleixats R (2003) Acc Chem Res 36(8):638–643

    Article  CAS  Google Scholar 

  8. Salem AK, Searson PC, Leong KW (2003) Nat Mater 2(10):668–671

    Article  CAS  Google Scholar 

  9. Peng ZA, Peng X (2002) J Am Chem Soc 124(13):3343–3353

    Article  CAS  Google Scholar 

  10. Puntes VF, Krishnan KM, Alivisatos AP (2001) Science 291(5511):2115–2117

    Article  CAS  Google Scholar 

  11. Choi CHJ, Zuckerman JE, Webster P, Davis ME (2011) P Natl Acad Sci USA 108(16):6656–6661

    Article  CAS  Google Scholar 

  12. Albanese A, Chan WC (2011) ACS Nano 5(7):5478–5489

    Article  CAS  Google Scholar 

  13. Karmali PP, Simberg D (2011) Expert Opin Drug Del 8(3):343–357

    Article  CAS  Google Scholar 

  14. Larson TA, Joshi PR, Sokolov K (2012) ACS Nano 6(10):9182–9190

    Article  CAS  Google Scholar 

  15. Kodiyan A, Silva EA, Kim J, Aizenberg M, Mooney DJ (2012) ACS Nano 6(6):4796–4805

    Article  CAS  Google Scholar 

  16. Liu XS, Chen YJ, Li H, Huang N, Jin Q, Ren KF, Ji J (2013) ACS Nano 7(7):6244–6257

    Article  CAS  Google Scholar 

  17. Yang W, Zhang L, Wang SL, White AD, Jiang SY (2009) Biomaterials 30(29):5617–5621

    Article  CAS  Google Scholar 

  18. Zhang L, Xue H, Gao CL, Carr L, Wang JN, Chu BC, Jiang SY (2010) Biomaterials 31(25):6582–6588

    Article  CAS  Google Scholar 

  19. Collier JH, Segura T (2011) Biomaterials 32(18):4198–4204

    Article  CAS  Google Scholar 

  20. Levy R, Thanh NTK, Doty RC, Hussain I, Nichols RJ, Schiffrin DJ, Brust M, Fernig DG (2004) J Am Chem Soc 126(32):10076–10084

    Article  CAS  Google Scholar 

  21. Olmedo I, Araya E, Sanz F, Medina E, Arbiol J, Toledo P, Alvarez-Lueje A, Giralt E, Kogan MJ (2008) Bioconjug Chem 19(6):1154–1163

    Article  CAS  Google Scholar 

  22. Morais T, Soares ME, Duarte JA, Soares L, Maia S, Gomes P, Pereira E, Fraga S, Carmo H, Bastos MDL (2012) Eur J Pharm Biopharm 80(1):185–193

    Article  CAS  Google Scholar 

  23. Prades R, Guerrero S, Araya E, Molina C, Salas E, Zurita E, Selva J, Egea G, Lopez-Iglesias C, Teixido M, Kogan MJ, Giralt E (2012) Biomaterials 33(29):7194–7205

    Article  CAS  Google Scholar 

  24. Arosio D, Manzoni L, Araldi EM, Scolastico C (2011) Bioconjug Chem 22(4):664–672

    Article  CAS  Google Scholar 

  25. Kim YH, Jeon J, Hong SH, Rhim WK, Lee YS, Youn H, Chung JK, Lee MC, Lee DS, Kang KW, Nam JM (2011) Small 7(14):2052–2060

    Article  CAS  Google Scholar 

  26. Scari G, Porta F, Fascio U, Avvakumova S, Dal Santo V, De Simone M, Saviano M, Leone M, Del Gatto A, Pedone C, Zaccaro L (2012) Bioconjug Chem 23(3):340–349

    Article  CAS  Google Scholar 

  27. Sun L, Liu D, Wang Z (2008) Langmuir 24(18):10293–10297

    Article  CAS  Google Scholar 

  28. Reithofer MR, Lakshmanan A, Ping AT, Chin JM, Hauser CA (2014) Biomaterials 35(26):7535–7542

    Article  CAS  Google Scholar 

  29. Chen S, Cao Z, Jiang S (2009) Biomaterials 30(29):5892–5896

    Article  CAS  Google Scholar 

  30. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Chembiochem 3(5):461–463

    Article  CAS  Google Scholar 

  31. Lin A, Son DH, Ahn IH, Song GH, Han WT (2007) Opt Express 15(10):6374–6379

    Article  CAS  Google Scholar 

  32. Wang H, Huff TB, Zweifel DA, He W, Low PS, Wei A, Cheng JX (2005) Proc Natl Acad Sci U S A 102(44):15752–15756

    Article  CAS  Google Scholar 

  33. Haiss W, Thanh NT, Aveyard J, Fernig DG (2007) Anal Chem 79(11):4215–4221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank WPI, USA, and IISc, Bangalore, India, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kalakonda.

Electronic Supplementary Material

Fig. S1

FTIR spetra of gold nanoparticles (DOCX 53 kb)

Fig. S2

The photo luminance (PL) spectra of GNPs as the function of wavelength at different excitation wavelengths (b) The PL peak intensity of GNP as the function of GNP concentrations at different excitation wavelengths. (DOCX 268 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalakonda, P., Sreenivas, B. Synthesis and Optical Properties of Highly Stabilized Peptide-Coated Gold Nanoparticles. Plasmonics 12, 1221–1225 (2017). https://doi.org/10.1007/s11468-016-0379-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0379-y

Keywords

Navigation