Skip to main content
Log in

Plasmonic Effects in Tin Disulfide Nanostructured Thin Films Obtained by the Close-Spaced Vacuum Sublimation

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This work reports the investigation of plasmonic effects in tin disulfide (SnS2) nanostructured films obtained by the close-spaced vacuum sublimation method (CSS). Structural properties and phase composition of SnS2 films were studied with the help of field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and Raman spectroscopy. Surface morphology and optical polarization properties of SnS2 films deposited at different substrate temperature were investigated by modulation-polarization spectroscopy (MPS). Surface plasmon resonances (SPR) with localized and polariton types were observed by measuring of angular and spectral characteristics of polarization difference. Radiative and non-radiative modes of surface plasmons have been analyzed at different light incident angles. The influence of surface morphology on resonant parameters of different types of SPR was studied. Correlation between the experimental results and theoretical calculations was established. The refractive and absorption indexes were found for the SnS2 films at different substrate temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huang Y, Sutter E, Sadowski JT, Cotlet M, Monti OLA, Racke DA (2014) Tin disulfide - an emerging layered metal Dichalcogenide semiconductor: materials properties and device characteristics. ACS Nano 8:10743–10755. doi:10.1021/nn504481r C2014

    Article  CAS  Google Scholar 

  2. Burton LA, Colombara D, Abellon RD, Grozema FC, Peter LM, Savenije TJ (2013) Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chem Mater 25:4908–4916. doi:10.1021/cm403046m

    Article  CAS  Google Scholar 

  3. Shi C, Chen Z, Shi G, Sun R, Zhan X, Shen X (2012) Influence of annealing on characteristics of tin disulfide thin films by vacuum thermal evaporation. Thin Solid Films 520:4898–4901. doi:10.1016/j.tsf.2012.03.050

    Article  CAS  Google Scholar 

  4. Su G, Hadjiev VG, Loya PE, Zhang J, Lei S, Maharjan S (2015) Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett 15:506–513. doi:10.1021/nl503857r

    Article  CAS  Google Scholar 

  5. Seo J, Jang J, Park S, Kim C, Park B, Cheon J (2008) Two-dimensional SnS 2 Nanoplates with extraordinary high discharge capacity for lithium ion batteries. Adv Mater 20:4269–4273. doi:10.1002/adma.200703122

    Article  CAS  Google Scholar 

  6. Wang Q, Nie Y-X, He B, Xing L-L, Xue X-Y (2014) SnS2–graphene nanocomposites as anodes of lithium-ion batteries. Solid State Sci 31:81–84. doi:10.1016/j.solidstatesciences.2014.03.001

    Article  Google Scholar 

  7. Singh S, Gupta BD (2010) Simulation of a surface plasmon resonance-based fiber-optic sensor for gas sensing in visible range using films of nanocomposites. Meas Sci Technol 21:115202. doi:10.1088/0957-0233/21/11/115202

    Article  Google Scholar 

  8. Li J, Yang Z, Zhang Y, Yu S, Xu Q, Qu Q (2012) Tin disulfide nanoflakes decorated with gold nanoparticles for direct electrochemistry of glucose oxidase and glucose biosensing. Microchim Acta 179:265–272. doi:10.1007/s00604-012-0889-z

    Article  CAS  Google Scholar 

  9. Grinevich VS, Filevska LM, Matyash IE, Maximenko LS, Mischuk ON, Rudenko SP (2012) Surface plasmon resonance investigation procedure as a structure sensitive method for SnO2 nanofilms. Thin Solid Films 522:452–456. doi:10.1016/j.tsf.2012.08.054

    Article  CAS  Google Scholar 

  10. Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25(24):3264–3294

    Article  CAS  Google Scholar 

  11. Comin A, Manna L (2014) New materials for tunable plasmonic colloidal nanocrystals 2013 Chem. Soc Rev 43:3957. doi:10.1039/c3cs60265f

    Article  CAS  Google Scholar 

  12. Kovalenko MV, Manna L, Cabot A, Hens Z, Talapin DV, Kagan CR, Klimov VI, Rogach AL, Reiss P, Milliron DJ, Guyot-Sionnnest P, Konstantatos G, Parak WJ, Hyeon T, Korgel BA, Murray CB, Heiss W (2015) ACS Nano 9:1012

    Article  CAS  Google Scholar 

  13. Wang F, Li Q, Lin L, Peng H, Liu Z, Dongsheng Xu J (2015) Monodisperse copper chalcogenide nanocrystals: controllable synthesis and the pinning of plasmonic resonance absorption. Am Chem Soc. doi:10.1021/jacs.5b05591

    Google Scholar 

  14. Alsaif MMYA, Latham K, Field MR, Yao DD, Medehkar NV, Beane GA, Kaner RB, Russo SP, Ou JZ, Kalantar-zadeh K (2014) Tunable Plasmon resonances in two-dimensional molybdenum oxide nanoflakes. Adv Mater 26:3931–3937

    Article  CAS  Google Scholar 

  15. Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A (2014) Two-dimensional material Nanophotonics. Nat Photonics 8:899–907

    Article  CAS  Google Scholar 

  16. Gordon TR, Paik T, Klein DR, Naik GV, Caglayan H, Boltasseva A, Murray CB (2013) Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO). Nano Lett 13:2857–2863

    Article  CAS  Google Scholar 

  17. Maier S.A.(2007) Plasmonics: fundamentals and applications / Maier S.A. – UK: Springer Science + Business Media LLC, 221p

  18. Wang Y, Ou JZ, Chrimes AF, Carey BJ, Daeneke T, Alsaif MMYA, Mortazavi M, Zhuiykov S, Medhekar N, Bhaskaran M, Friend JR, Strano MS, Kalantar-Zadeh K (2015) Plasmon resonances of highly doped two-dimensional MoS 2. Nano Lett 15(2):883–890. doi:10.1021/nl503563g

    Article  CAS  Google Scholar 

  19. Alsaif MMYA, Field MR, Daeneke T, Chrimes AF, Zhang W, Carey B, Berean KJ, Walia S, van Embden J, Zhang B, Latham K, Kalantar-zadeh K, Ou JZ (2016) Exfoliation solvent dependent Plasmon resonances in two dimensional sub-stoichiometric molybdenum oxide nanoflakes. ACS Appl Mater Interfaces. doi:10.1021/acsami.5b12076

    Google Scholar 

  20. Li X, Zhu J, Wei B (2016) Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem Soc Rev 45:3145–3187. doi:10.1039/C6CS00195E

    Article  CAS  Google Scholar 

  21. Yang Y-B, Dash JK, Xiang Y, Wang Y, Shi J, Dinolfo PH, Lu T-M, Wang G-C (2016) Tuning the phase and optical properties of ultrathin SnS x films. J Phys Chem C. doi:10.1021/acs.jpcc.6b03529

    Google Scholar 

  22. Panda SK, Antonakos A, Liarokapis E, Bhattacharya S, Chaudhuri S (2007) Optical properties of nanocrystalline SnS2 thin films. Mater Res Bull 42:576–583. doi:10.1016/j.materresbull.2006.06.028

    Article  CAS  Google Scholar 

  23. Serdega B.K., Rudenko S.P., Maksimenko L.S., Matyash I.E. (2011) Plasmonic optical properties and the polarization modulation technique, Polarimetric Detection, Characterization, and Remote Sensing, edited by M. Mishchenko: Springer, Germany, pp. 473–500

  24. Stetsenko M.O., Maksimenko L.S., Krishchenko I. M., Korchovyi A. A., Kryvyi S. B., Kaganovich E. B., Serdega B.K. 2016, Surface Plasmon’s Dispersion Properties of Porous Gold Films. Nanoscale Res Lett 11(1)

  25. Grynko DA, Barabash YM, Maksimenko LS, Matyash IE, Mishchuk ON, Rudenko SP (2012) Modulation polarimetry of the topological effect in gold-organic nanocomposite films. Phys Solid State 54:2301–2308. doi:10.1134/S1063783412110108

    Article  CAS  Google Scholar 

  26. Maksimenko LS, Matyash IE, Mischuk OM, Stetsenko MO, Serdega BK (2015) Diagnostic of surface plasmons resonances in nanosized gold films by modulation polarization spectroscopy. Plasmonics. doi:10.1007/s11468-015-0080-6

    Google Scholar 

  27. Voznyi A, Kosyak V, Opanasyuk A, Tirkusova N, Grase L, Medvids A (2016) Structural and electrical properties of SnS2 thin films. Mater Chem Phys. doi:10.1016/j.matchemphys.2016.01.036

    Google Scholar 

  28. Kosyak V, Opanasyuk A, Bukivskij PM, Gnatenko YP (2010) Study of the structural and photoluminescence properties of CdTe polycrystalline films deposited by close-spaced vacuum sublimation. J Cryst Growth 312:1726–1730. doi:10.1016/j.jcrysgro.2010.02.034

    Article  CAS  Google Scholar 

  29. Sharma RC, Chang YA (1986) The S-Sn (sulfur-tin) system. J PHASE EQUILIBRIA 7:269–273. doi:10.1007/BF02869004

    CAS  Google Scholar 

  30. Chandrasekhar HR, Humphreys RG, Zwick U, Cardona M (1977) Infrared and Raman spectra of the IV-VI compounds SnS and SnSe. Phys Rev B 15:2177–2183. doi:10.1103/PhysRevB.15.2177

    Article  CAS  Google Scholar 

  31. Hadjiev VG, De D, Peng HB, Manongdo J, Guloy AM (2013) Phonon probe of local strains in SnSxSe2 − x mixed crystals. Phys Rev B 87:104302. doi:10.1103/PhysRevB.87.104302

    Article  Google Scholar 

  32. Malaquias J, Fernandes PA, Salomé PMP, da Cunha AF (2011) Assessment of the potential of tin sulphide thin films prepared by sulphurization of metallic precursors as cell absorbers. Thin Solid Films 519:7416–7420. doi:10.1016/j.tsf.2011.01.393

    Article  CAS  Google Scholar 

  33. Sousa MG, da Cunha AF, Fernandes PA (2014) Annealing of RF-magnetron sputtered SnS2 precursors as a new route for single phase SnS thin films. J Alloys Compd 592:80–85. doi:10.1016/j.jallcom.2013.12.200

    Article  CAS  Google Scholar 

  34. Chandrasekhar HR, Mead DG (1979) Long-wavelength phonons in mixed-valence semiconductor Sn2Sn4S3. Phys Rev B 19:932–937

    Article  CAS  Google Scholar 

  35. Nikolic PM, Miljkovic L, Mihajlovic P, Lavrencic B (1977) Splitting and coupling of lattice modes in the layer compound SnS. JPhys C Solid State Plys 10:L289–L292. doi:10.1088/0022-3719/10/11/003

    Article  CAS  Google Scholar 

  36. Smith AJ, Meek PE, Liang WY (1977) Raman scattering studies of SnS2 and SnSe2. J Phys C Solid State Phys 10:1321–1323. doi:10.1088/0022-3719/10/8/035

    Article  CAS  Google Scholar 

  37. Jain P, Arun P (2013) Influence of grain size on the band-gap of annealed SnS thin films. Thin Solid Films 548:241–246. doi:10.1016/j.tsf.2013.09.089

    Article  CAS  Google Scholar 

  38. Alim K a, Fonoberov V a, Balandin A a (2005) Origin of the optical phonon frequency shifts in ZnO quantum dots. Appl Phys Lett 86:1–3. doi:10.1063/1.1861509

    Article  Google Scholar 

  39. Hsu S-W, Ngo C, Tao AR (2014) Tunable and directional plasmonic coupling within semiconductor nanodisk assemblies. Nano Lett 14(5):2372–2380. doi:10.1021/nl404777h

    Article  CAS  Google Scholar 

  40. Robles V, Trigo JF, Guillen C, Herrero J Structural, chemical, and optical properties of tin sulfide thin films as controlled by the growth temperature during co-evaporation and subsequent annealing. J Mater Sci 48(11):3943–3949. doi:10.1007/s10853-013-7198-8

  41. Malitson I (1965) Interspecimen comparison of the refractive index of fused silica. J Opt Soc Am 55(10):1205–1209

    Article  CAS  Google Scholar 

  42. Santhosh KK, Manoharan C, Amalraj L, Dhanapandian S, Kiruthigaa G, Vijayakumar K (2012) Spray deposition and characterization of undoped and In-doped tin disulphide thin films Cryst. Res Technol 1–9. doi:10.1002/crat.201100349

  43. Remadevi T.L., Dhanya A.C., Deepa K. (2014) Photoassisted chemically deposited tin sulfide thin films based on two different chemical formulations. J Electron Mater 43(11)

  44. Patel M, Mukhopadhyay I, Ray A (2013) Annealing influence over structural and optical properties of sprayed SnS thin films. Opt Mater 35:1693–1699

    Article  CAS  Google Scholar 

  45. Dhanya AC, Deepa K, Geetanjali PM, Anupama M, Remadevi TL Effect of post deposition by UV irradiation on chemical bath deposited tin sulfide thin films. Appl Phys A Mater Sci Process. doi:10.1007/s00339-014-8262-1

  46. El-Nahass MM, Zeyada HM, Aziz MS, El-Ghamaz NA (2002) Optical properties of thermally evaporated SnS thin films. Opt Mater 20:159

    Article  CAS  Google Scholar 

  47. Khadraoui M, Benramdane N, Mathieu C, Bouzidi A, Miloua R, Kebbab Z, Sahraoui K, Desfeux R (2010) Solid State Commun 150:297

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.О. Stetsenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stetsenko, M., Voznyi, A., Kosyak, V. et al. Plasmonic Effects in Tin Disulfide Nanostructured Thin Films Obtained by the Close-Spaced Vacuum Sublimation. Plasmonics 12, 1213–1220 (2017). https://doi.org/10.1007/s11468-016-0378-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0378-z

Keywords

Navigation