Skip to main content
Log in

Utilizing the Metallic Nano-Rods in Hexagonal Configuration to Enhance Sensitivity of the Plasmonic Racetrack Resonator in Sensing Application

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A high sensitive plasmonic refractive index sensor based on metal-insulator-metal (MIM) waveguides with embedding metallic nano-rods in racetrack resonator has been proposed. The refractive index changes of the dielectric material inside the resonator together with temperature changes can be acquired from the detection of the resonance wavelength, based on their linear relationship. With optimum design and considering a tradeoff among detected power, structure size, and sensitivity, the finite difference time domain simulations show that the refractive index and temperature sensitivity values can be obtained as high as 2610 nm per refractive index unit (RIU) and 1.03 nm/°C, respectively. In addition, resonance wavelengths of resonator are obtained experimentally by using the resonant conditions. The effects of nano-rods radius and refractive index of racetrack resonator are studied on the sensing spectra, as well. The proposed structure with such high sensitivity will be useful in optical communications that can provide a new possibility for designing compact and high-performance plasmonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AA (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater 2(4):229–232

    Article  CAS  Google Scholar 

  2. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  3. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445(7123):39–46

    Article  CAS  Google Scholar 

  4. Chen Z, Cao X, Song X, Wang L, Yu L (2016) Side-coupled cavity-induced Fano resonance and its application in nanosensor. Plasmonics 11(1):307–313

    Article  CAS  Google Scholar 

  5. Lu H, Liu X, Wang L, Gong Y, Mao D (2011) Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt Express 19(4):2910–2915

    Article  CAS  Google Scholar 

  6. Gao Y, Ren G, Zhu B, Huang L, Li H, Yin B, Jian S (2016) Tunable plasmonic filter based on graphene split-ring. Plasmonics 11(1):291–296

    Article  CAS  Google Scholar 

  7. Li-Ping X, Fa-Qiang W, Rui-Sheng L, Shi-Wei Z, Miao H (2015) A high-sensitivity refractive-index sensor based on plasmonic waveguides asymmetrically coupled with a nanodisk resonator. Chinese Phys Lett 32(7):070701-1–070701-4

    Google Scholar 

  8. Kwon SH (2013) Deep subwavelength-scale metal–insulator–metal plasmonic disk cavities for refractive index sensors. IEEE Photonics Journal 5(1):4800107-1–4800107-7

    Google Scholar 

  9. Vafapour Z, Zakery A (2015) New approach of plasmonically induced reflectance in a planar metamaterial for plasmonic sensing applications. Plasmonics 11(2):609–618

    Article  Google Scholar 

  10. Wu T, Liu Y, Yu Z, Peng Y, Shu C, Ye H (2014) The sensing characteristics of plasmonic waveguide with a ring resonator. Opt Express 22(7):7669–7677

    Article  CAS  Google Scholar 

  11. Rakhshani MR, Mansouri-Birjandi MA (2016) Dual wavelength demultiplexer based on metal–insulator–metal plasmonic circular ring resonators. J Mod Opt 63(11):1078–1086

    Article  CAS  Google Scholar 

  12. Wu YD (2014) High transmission efficiency wavelength division multiplexer based on metal–insulator–metal plasmonic waveguides. J Lightwave Technol 32(24):4242–4246

    Google Scholar 

  13. Wang X, Wang P, Chen C, Chen J, Lu Y, Ming H, Zhan Q (2010) Plasmonic racetrack resonator with high extinction ratio under critical coupling condition. J Appl Phys 107(12):124517

    Article  Google Scholar 

  14. Chen Z, Cui L, Song X, Yu L, Xiao J (2015) High sensitivity plasmonic sensing based on Fano interference in a rectangular ring waveguide. Opt Commun 340:1–4

    Article  CAS  Google Scholar 

  15. Chen Z, Yu L, Wang L, Duan G, Zhao Y, Xiao J (2015) Sharp asymmetric line shapes in a plasmonic waveguide system and its application in nanosensor. J Lightwave Technol 33(15):3250–3253

    Article  Google Scholar 

  16. Rakhshani MR, Mansouri-Birjandi MA (2016) High sensitivity plasmonic sensor based on metal–insulator–metal waveguide and hexagonal-ring cavity with round-corners. Sensors Journal, IEEE 16(9):3041–3046

    Article  Google Scholar 

  17. Wen K, Hu Y, Chen L, Zhou J, Lei L, Meng Z (2016) Single/dual Fano resonance based on plasmonic metal-dielectric-metal waveguide. Plasmonics 11(1):315–321

    Article  CAS  Google Scholar 

  18. Yu X, Shi L, Han D, Zi J, Braun PV (2010) High quality factor metallodielectric hybrid plasmonic–photonic crystals. Adv Funct Mater 20(12):1910–1916

    Article  CAS  Google Scholar 

  19. Nezhad MP, Simic A, Bondarenko O, Slutsky B, Mizrahi A, Feng L, Lomakin V, Fainman Y (2010) Room-temperature subwavelength metallo-dielectric lasers. Nat Photonics 4(6):395–399

    Article  CAS  Google Scholar 

  20. Maksymov IS (2011) Optical switching and logic gates with hybrid plasmonic–photonic crystal nanobeam cavities. Phys Lett A 375(5):918–921

    Article  CAS  Google Scholar 

  21. Taflove A, Hagness SC (2000) Computational electrodynamics. Artech house publishers

  22. Masi M, Orobtchouk R, Fan G, Fedeli JM, Pavesi L (2010) Towards a realistic modelling of ultra-compact racetrack resonators. J Lightwave Technol 28(22):3233–3242

    CAS  Google Scholar 

  23. Ma N, Li C, Poon AW (2004) Laterally coupled hexagonal micropillar resonator add-drop filters in silicon nitride. Photonics Technology Letters, IEEE 16(11):2487–2489

    Article  CAS  Google Scholar 

  24. Wang TB, Wen XW, Yin CP, Wang HZ (2009) The transmission characteristics of surface plasmon polaritons in ring resonator. Opt Express 17(26):24096–24101

    Article  CAS  Google Scholar 

  25. Sulliran DM (1996) Exceeding the courant condition with the FDTD method. IEEE Microw Guided Wave Lett 6(8):289–291

    Article  Google Scholar 

  26. Wei PK, Huang YC, Chieng CC, Tseng FG, Fann W (2005) Off-angle illumination induced surface plasmon coupling in subwavelength metallic slits. Opt Express 13(26):10784–10794

    Article  Google Scholar 

  27. Zhang Q, Huang XG, Lin XS, Tao J, Jin XP (2009) A subwavelength coupler-type MIM optical filter. Opt Express 17(9):7549–7555

    Article  CAS  Google Scholar 

  28. Chen L, Liu Y, Yu Z, Wu D, Ma R, Zhang Y, Ye H (2016) Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity. Opt Express 24(9):9975–9983

    Article  CAS  Google Scholar 

  29. Li Z, Zhang S, Halas NJ, Nordlander P, Xu H (2011) Coherent modulation of propagating plasmons in silver-nanowire-based structures. Small 7(5):593–596

    Article  CAS  Google Scholar 

  30. Chen S, Meng L, Hu J, Yang Z (2015) Fano interference between higher localized and propagating surface plasmon modes in nanovoid arrays. Plasmonics 10(1):71–76

    Article  CAS  Google Scholar 

  31. Dolatabady A, Granpayeh N, Nezhad VF (2013) A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nanodisk resonator. Opt Commun 300:265–268

    Article  CAS  Google Scholar 

  32. Raza S, Toscano G, Jauho AP, Mortensen NA, Wubs M (2013) Refractive-index sensing with ultrathin plasmonic nanotubes. Plasmonics 8(2):193–199

    Article  CAS  Google Scholar 

  33. Zafar R, Salim M (2015) Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor. IEEE Sensors J 15(11):6313–6317

    Article  CAS  Google Scholar 

  34. Ren M, Pan C, Li Q, Cai W, Zhang X, Wu Q, Fan S, Xu J (2013) Isotropic spiral plasmonic metamaterial for sensing large refractive index change. Opt Lett 38(16):3133–3136

    Article  Google Scholar 

  35. Xie YY, Huang YX, Zhao WL, Xu WH, He C (2015) A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity. IEEE Photonics Journal 7(2):1–12

    Article  Google Scholar 

  36. Chen Z, Yu L (2014) Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system. IEEE Photonics Journal 6(6):1–8

    Google Scholar 

  37. Binfeng Y, Ruohu Z, Guohua H, Yiping C (2016) Ultra sharp Fano resonances induced by coupling between plasmonic stub and circular cavity resonators. Plasmonics. doi:10.1007/s11468-015-0154-5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Mansouri-Birjandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhshani, M.R., Mansouri-Birjandi, M.A. Utilizing the Metallic Nano-Rods in Hexagonal Configuration to Enhance Sensitivity of the Plasmonic Racetrack Resonator in Sensing Application. Plasmonics 12, 999–1006 (2017). https://doi.org/10.1007/s11468-016-0351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0351-x

Keywords

Navigation