Skip to main content

Advertisement

Log in

Tunable Circular Dichroism of Achiral Graphene Plasmonic Structures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Graphene bilayered split rings (BSRs) are proposed to generate tunable circular dichroism (CD). BSRs with traditional materials do not elicit the CD effect because of C4 symmetry. By contrast, BSRs with graphene can achieve the CD effect by varying the Fermi energy of each part of the split rings. The CD signal can be reversed from positive to negative or vice versa by exchanging the Fermi energy. CD effects can also be tuned by varying the Fermi energies of the different parts. This phenomenon indicates that the chirality of BSRs gradually change as the Fermi energy varies. This concept provides a method to change chirality and dynamically vary the CD effect without rebuilding the structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hentschel M, Wu L, Schäferling M, Bai P, Li EP, Giessen H (2012) Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons. ACS Nano 6(11):10355–10365

    Article  CAS  PubMed  Google Scholar 

  2. Cui Y, Kang L, Lan S, Rodrigues S, Cai W (2014) Giant chiral optical response from a twisted-arc metamaterial. Nano Lett 14(2):1021–1025

    Article  CAS  PubMed  Google Scholar 

  3. Plum E, Liu XX, Fedotov VA, Chen Y, Tsai DP, Zheludev NI (2009) Metamaterials: optical activity without chirality. Phys Rev Lett 102(11):113902

    Article  CAS  PubMed  Google Scholar 

  4. Zhang W, Wang Y, Wen X, Zhang Z (2015) Giant circular dichroism induced by silver nanocuboid heterodimers. Appl Opt 54(31):9359–9363

    Article  CAS  PubMed  Google Scholar 

  5. Cao T, Wei C, Zhang L (2014) Modeling of multi-band circular dichroism using metal/dielectric/metal achiral metamaterials. Optical Materials Express 4(8):1526–1534

    Article  Google Scholar 

  6. Gansel JK, Wegener M, Burger S, Linden S (2010) Gold helix photonic metamaterials: a numerical parameter study. Opt Express 18(2):1059–1069

    Article  CAS  PubMed  Google Scholar 

  7. Zhang ZY, Zhao YP (2011) The visible extinction peaks of Ag nanohelixes: a periodic effective dipole model. Appl Phys Lett 98(8):083102

    Article  CAS  Google Scholar 

  8. Wu S, Xu S, Zhang Y, Wu Y, Jiang J, Wang Q, Zhu Y (2014) Asymmetric transmission and optical rotation of a quasi-3D asymmetric metallic structure. Opt Lett 39(22):6426–6429

    Article  PubMed  Google Scholar 

  9. Wu L, Yang Z, Cheng Y, Lu Z, Zhang P, Zhao M, Duan J (2013) Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials. Opt Express 21(5):5239–5246

    Article  PubMed  Google Scholar 

  10. Cao T, Zhang L, Simpson RE, Wei C, Cryan MJ (2013) Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials. Opt Express 21(23):27841–27851

    Article  CAS  PubMed  Google Scholar 

  11. Yin X, Schäferling M, Metzger B, Giessen H (2013) Interpreting chiral nanophotonic spectra: the plasmonic born–Kuhn model. Nano Lett 13(12):6238–6243

    Article  CAS  PubMed  Google Scholar 

  12. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271

    Article  CAS  Google Scholar 

  13. Ligato N, Cupolillo A, Sindona A, Riccardi P, Pisarra M, Caputi LS (2014) A comparative study of the plasmonic properties of graphene on lattice-matched and lattice-mismatched Ni surfaces. Surf Sci 626:40–43

    Article  CAS  Google Scholar 

  14. Fürst JA, Pedersen JG, Flindt C, Mortensen NA, Brandbyge M, Pedersen TG, Jauho AP (2009) Electronic properties of graphene antidot lattices. New J Phys 11(9):095020

    Article  CAS  Google Scholar 

  15. Weser M, Rehder Y, Horn K, Sicot M, Fonin M, Preobrajenski AB, Dedkov YS (2010) Induced magnetism of carbon atoms at the graphene/Ni (111) interface. Appl Phys Lett 96(1):012504

    Article  CAS  Google Scholar 

  16. Yuan S, Roldán R, Jauho AP, Katsnelson MI (2013) Electronic properties of disordered graphene antidot lattices. Phys Rev B 87(8):085430

    Article  CAS  Google Scholar 

  17. Cheng H, Chen S, Yu P, Duan X, Xie B, Tian J (2013) Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips. Appl Phys Lett 103(20):203112

    Article  CAS  Google Scholar 

  18. Lu H, Zeng C, Zhang Q, Liu X, Hossain MM, Reineck P, Gu M (2015) Graphene-based active slow surface plasmon polaritons. Scientific reports. 5.

  19. Carrasco E, Tamagnone M, Mosig JR, Low T, Perruisseau-Carrier J (2015) Gate-controlled mid-infrared light bending with aperiodic graphene nanoribbons array. Nanotechnology 26(13):134002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Foundation of China (Grant No. 61575117), the Fundamental Research Funds for the Central Universities (GK201303007), excellent doctor degree dissertation of Shaanxi Normal University (X2014YB08), and Innovation Funds of Graduate Programs of Shaanxi Normal University (2016CSZ013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyue Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Wang, Y., Luo, L. et al. Tunable Circular Dichroism of Achiral Graphene Plasmonic Structures. Plasmonics 12, 829–833 (2017). https://doi.org/10.1007/s11468-016-0331-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0331-1

Keywords

Navigation