Skip to main content
Log in

Metal-Coated Silicon Nanowire Embedded Plasmonic Photonic Crystal Fiber: Kerr Nonlinearity and Two-Photon Absorption

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In silicon, the presence of two photon absorption (TPA) and the generated free carriers can strongly perturb any Kerr-related nonlinear performance. Special consideration about the geometry and applied input power is needed to reduce undesirable free carrier effects (FCE). In our study, a plasmonic photonic crystal structure consisting of a central metal-coated silicon nanowire is proposed. The photonic crystal cladding and plasmonic nature of the guided modes provide the efficient wave propagation in the subwavelength core radius size of 150 nm, well beyond the diffraction limit at λ = 1.55 μm. Considerable increase of the threshold powers (approximate increment of 42d B W and 12d B W for the free carrier absorption and dispersion threshold powers at r S i = 500 nm) for the observation of FCE is a distinguished feature of the proposed structure which guarantee the safe launch of high input powers for full development of Kerr-based phenomena. An excellent agreement between the numerical solution of the nonlinear schrödinger equation and the calculated threshold powers confirms the obtained results. The proposed structure has potential applications in the areas regarding the Kerr-related nonlinear performance especially with relative high powers utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tong L, Lou J, Mazur E (2004) Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Opt Express 12:1025–1035

    Article  CAS  PubMed  Google Scholar 

  2. Hu M, Wang C, Li YZW, Chai L, Zheltikov A (2004) Multiplex frequency conversion of unamplified 30-fs ti: sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber. Opt Express 12:6129–6134

    Article  PubMed  Google Scholar 

  3. Leon-Saval SG, Birks TA, Wadsworth WJ, Russell PS, Mason MW (2004) Supercontinuum generation in submicron fibre waveguides. Opt Express 12:2864–2869

    Article  CAS  PubMed  Google Scholar 

  4. Grillet C, Smith C, Freeman D, Madden S, Luther-Davies B, Magi EC, Moss DJ, Eggleton BJ (2006) Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires. Opt Express 14:1070–1078

    Article  PubMed  Google Scholar 

  5. Foresi JS, Villeneuve PR, Ferrera J, Thoen ER, Steinmeyer G, Joannopoulos S FJD, Kimerling LC, Smith HI, Ippen EP (1997) Photonic-bandgap microcavities in opticalwaveguides. Nature 390:143–145

    Article  CAS  Google Scholar 

  6. Jalali B, Paniccia M, Reed G (2006) Silicon photonics. IEEE Microw Mag 6:58–68

  7. Gunasundari E, Senthilnathan K, Sivabalan S, Abobaker AM, Nakkeeran K, Babu PR (2014) Waveguiding properties of a silicon nanowire embedded photonic crystal fiber. Opt Mater 36:958–964

    Article  CAS  Google Scholar 

  8. Biancalana F, Tran TX, Stark S, Schmidt MA, Russell PSJ (2010) Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires. Phys Rev Lett 105:093,904

    Article  CAS  Google Scholar 

  9. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1:641

    Article  CAS  Google Scholar 

  10. Hwang Y, Hwang MS, Lee WW, Park WI, Park HG (2013) Metal-coated silicon nanowire plasmonic waveguides. Appl Phys Express 6:042,502

    Article  CAS  Google Scholar 

  11. Bogaerts W, Baets R, Dumon P, Wiaux V, Beckx S, Taillaert D, Campenhout Luyssaert J Band Van, Bienstman P, Van Thourhout D (2005) Nanophotonic waveguides in silicon-on-insulator fabricated with cmos technology. IEEE Lightwave Technol 23:401–412

    Article  CAS  Google Scholar 

  12. Foster MA, Turner AC, Lipson M, Gaeta AL (2008) Nonlinear optics in photonic nanowires. Opt Express 16:1300–1320

    Article  PubMed  Google Scholar 

  13. Grillet C, Carletti L, Monat C, Grosse P, Bakir BB, Menezo S, Fedeli JM, Moss DJ (2012) Amorphous silicon nanowires combining high nonlinearity, fom and optical stability. Opt Express 20:22,609–22,615

    Article  CAS  Google Scholar 

  14. Daniel BA, Agrawal GP (2010) Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects. J Opt Soc Am B 27:956–965

    Article  CAS  Google Scholar 

  15. Foster M, Gaeta A, Cao Q, Trebino R (2005) Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires. Opt Express 13:6848–6855

    Article  PubMed  Google Scholar 

  16. Hsieh IW, Chen X, Liu X, Dadap JI, Panoiu NC, Chou CY, Xia F, Green WM, Vlasov YA, Osgood RM (2007) Supercontinuum generation in silicon photonic wires. Opt Express 15:15,242–15,243

    Article  Google Scholar 

  17. Blanco-Redondo A, Husko C, Eades D, Zhang Y, Li J, Krauss T, Eggleton B (2014) Observation of soliton compression in silicon photonic crystals. Nat Commun 5:1–8. doi:10.1038/ncomms4160

    Article  CAS  Google Scholar 

  18. Yin L, Agrawal GP (2007) Impact of two-photon absorption on self-phase modulation in silicon waveguides. Opt Lett 32:2031–2033

    Article  PubMed  Google Scholar 

  19. Rukhlenko ID, Premaratne M, Agrawal GP (2010) Nonlinear propagation in silicon-based plasmonic waveguides from thestandpoint of applications. Opt Express 19:206–217

    Article  Google Scholar 

  20. Pitilakis A, Kriezis EE (2013) Highly nonlinear hybrid silicon-plasmonic waveguides: analysis and optimization. J Opt Soc Am B 30:1954–1965

    Article  CAS  Google Scholar 

  21. Afshar SV, Monro TM (2009) A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part i: Kerr nonlinearity. Opt Express 17:2298–2318

    Article  CAS  Google Scholar 

  22. Soref RA, Bennett BR (1987) Electrooptical effects in silicon. IEEE J Quantum Electron 23:123–129

    Article  Google Scholar 

  23. Lin Q, Painter OJ, Agrawal GP (2007) Nonlinear optical phenomena in silicon waveguides: Modeling and applications. Opt Express 15:16,604

    Article  CAS  Google Scholar 

  24. Zhang J, Lin Q, Piredda G, Boyd RW, Agrawal GP, Fauchet PM (2007) Anisotropic nonlinear response of silicon in the near-infrared region. Appl Phys Lett 91:071,113

    Article  CAS  Google Scholar 

  25. Monat C, Corcoran B, Ebnali-Heidari M, Grillet C, Eggleton BJ, White TP, O’Faolain L, Krauss TF (2009) Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides. Opt express 17:2944–2953

    Article  CAS  PubMed  Google Scholar 

  26. Osgood RMJ, Panoiu NC, Dadap JI, Liu X, Chen X, Hsieh I, Dulkeith E, Green WM, Vlasov YA (2009) Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires. Adv Opt Photon 1:162–235

    Article  CAS  Google Scholar 

  27. Agrawal GP (2001) Nonlinear fiber optics. Academic Press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Ahmadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, M., Ahmadi, V. & Ebnali-Heidari, M. Metal-Coated Silicon Nanowire Embedded Plasmonic Photonic Crystal Fiber: Kerr Nonlinearity and Two-Photon Absorption. Plasmonics 12, 819–827 (2017). https://doi.org/10.1007/s11468-016-0329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0329-8

Keywords

Navigation