, Volume 12, Issue 3, pp 663–673 | Cite as

Optimization of Surface Plasmon Resonance Biosensor with Ag/Au Multilayer Structure and Fiber-Optic Miniaturization

  • Mengdi Lu
  • Yuzhang Liang
  • Siyu Qian
  • Lixia Li
  • Zhenguo Jing
  • Jean-Francois Masson
  • Wei PengEmail author


In this paper, we report a novel wavelength interrogation-based surface plasmon resonance (SPR) system, in which a film of three Ag layers and three Au layers are alternately deposited on a Kretschmann configuration as sensing element. This multilayer film shows higher sensitivity for refractive index (RI) measurement by comparing with single Au layer structure, which is consistent with its theoretical calculation. A sensitivity range of 2056–5893 nm/RIU can be achieved, which is comparable to RI sensitivities of other wavelength-modulated SPR sensors. Compared with Ag film, this Ag/Au multilayer arrangement offers anti-oxidant protection. This SPR biosensor based on a cost-effective Ag/Au multilayer structure is applicable to the real-time detection of specific interactions and dissociation of low protein concentrations. To extend the application of this highly-sensitive metal film device, we integrated this concept on an optical fiber. The range of RI sensitivities with Ag/Au multilayer was 1847–3309 nm/RIU. This miniaturized Ag/Au multilayer-based fiber optic sensor has a broad application in chemical and biological sensing.


Surface plasmon Sensors Optical sensing and sensors Biological sensing and sensors 



The authors would like to thank the National Nature Science Foundation of China (Grant Nos. 11474043, 61520106013, and 61137005), the Doctoral Scientific Fund Project of the State Education Committee of China (Grant No. SRFDP- 20120041110040), and the Natural Science and Engineering Research Council of Canada (Grant No. RGPIN-2016-03864) for financial support.


  1. 1.
    Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539CrossRefPubMedGoogle Scholar
  2. 2.
    Boozer C, Yu Q, Chen S, Lee CY, Homola J, Yee SS, Jiang S (2003) Surface functionalization for self-referencing surface plasmon resonance (SPR) biosensors by multi-step self-assembly. Sensors Actuators B Chem 90:22–30CrossRefGoogle Scholar
  3. 3.
    Lu HB, Homola J, Campbell CT, Nenninger GG, Yee SS, Ratner BD (2001) Protein contact printing for a surface plasmon resonance biosensor with on-chip referencing. Sensors Actuators B Chem 74:91–99CrossRefGoogle Scholar
  4. 4.
    Green RJ, Frazier RA, Shakeshe KM, Davies MC, Roberts CJ, Tendler SJB (2000) Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomaterials 21:1823–1835CrossRefPubMedGoogle Scholar
  5. 5.
    Shao Y, Li Y, Gu D, Zhang K, Qu J, He J, Li X, Wu SY, Ho HP, Somekh MG (2013) Wavelength-multiplexing phase-sensitive surface plasmon imaging sensor. Opt Lett 38:1370–1372CrossRefPubMedGoogle Scholar
  6. 6.
    Chena Y, Dong B, Zhou W (2010) Surface plasmon resonance biosensor modified with multilayer silver nanoparticles films. Appl Surf Sci 257:021–1026Google Scholar
  7. 7.
    Jha R, Sharma AK (2009) High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared. Opt Lett 34:749–751CrossRefPubMedGoogle Scholar
  8. 8.
    Lin K, Wei L, Zhang D, Zheng R, Wang P, Lu Y, Ming H (2007) Temperature effects on prism-based surface plasmon resonance sensor. Chin Phys Lett 24:3081–3084CrossRefGoogle Scholar
  9. 9.
    Shibayama J, Takeuchi T, Goto N, Yamauchi J, Nakano H (2007) Numerical investigation of a Kretschmann-type surface plasmon resonance waveguide sensor. J Lightwave Technol 25:2605–2611CrossRefGoogle Scholar
  10. 10.
    Pollet J, Delport F, Janssen K, Jans K, Maes G, Pfeiffer H, Wevers M, Lammertyn J (2009) Fiber optic SPR biosensing of DNA hybridization and DNA–protein interactions. Biosens Bioelectron 25:864–869CrossRefPubMedGoogle Scholar
  11. 11.
    Anuj KS, Gupta BD (2004) Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation. Sensors Actuators B Chem 100:423–431CrossRefGoogle Scholar
  12. 12.
    Peng W, Banerji S, Kim Y, Booksh KS (2005) Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications. Opt Lett 30:2988–2990CrossRefPubMedGoogle Scholar
  13. 13.
    Caucheteur C, Shevchenko Y, Shao LY, Wuilpart M, Albert J (2011) High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement. Opt Express 19(2):1656–1664CrossRefPubMedGoogle Scholar
  14. 14.
    Masson JF, Obando L, Beaudoin S, Booksh KS (2004) Sensitive and real-time fiber-optic based surface plasmon resonance sensors for myoglobin and cardiac troponin I. Talanta 62:865–870CrossRefPubMedGoogle Scholar
  15. 15.
    Sharma K, Jha R, Gupta BD (2007) Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE J Sens 7:1118–1129CrossRefGoogle Scholar
  16. 16.
    Kim YC, Peng W, Banerji S, Booksh KS (2005) Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases. Opt Lett 30:2218–2220CrossRefPubMedGoogle Scholar
  17. 17.
    Iga M, Seki A, Watanabe K (2004) Hetero-core structured fiber optic surface plasmon resonance sensor with silver film. Sensors Actuators B Chem 101:368–372CrossRefGoogle Scholar
  18. 18.
    Wang Y, Meng S, Liang Y, Li L, Peng W (2013) Fiber-optic surface plasmon resonance sensor with multi-alternating metal layers for biological measurement. Photonic Sens 3:202–207CrossRefGoogle Scholar
  19. 19.
    Chen R, Wang M, Wang S, Liang H, Hu X, Sun X, Zhu J, Ma L, Jiang M, Hu J, et al. (2015) A low cost surface plasmon resonance biosensor using a laser line generator. Opt Commun 349:83–88CrossRefGoogle Scholar
  20. 20.
    Sharma AK, Gupta BD (2006) Fibre-optic sensor based on surface plasmon resonance with Ag-Au alloy nanoparticle films. Nanotechnology 17:124–131CrossRefGoogle Scholar
  21. 21.
    Murray-Méthot MP, Ratel M, Masson JF (2010) Optical properties of Au, Ag and bimetallic Au on Ag nanohole arrays. J Phys Chem C 114(18):8268–8275CrossRefGoogle Scholar
  22. 22.
    Zynio SA, Samoylov AV, Surovtseva ER, Mirsky VM, Shirshov YM (2002) Bimetallic layer increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors 2:62–70CrossRefGoogle Scholar
  23. 23.
    R. Tabassum, and B. D. gupta (2015) Performance analysis of bimetallic layer with zinc oxide for SPR-based fiber optic sensor, J Lightwave Technol 33: 4565–4571Google Scholar
  24. 24.
    B. Lee, S. Roh, and H. Kim (2009) Plasmon-sensor design can enhance sensing capability, SPIE Newsroom. doi: 10.1117/2.1200908.1751
  25. 25.
    Kim I, Kihm KD (2015) Nano sensing and energy conversion using surface Plasmon resonance (SPR). Materials 8:4332–4343CrossRefPubMedGoogle Scholar
  26. 26.
    Luk TS, Iltai K, Salvatore C, Howell SW, Subramania GS (2013) Near-infrared surface plasmon polariton dispersion control with hyperbolic metamaterials. Opt Express 21:11107–11114CrossRefPubMedGoogle Scholar
  27. 27.
    Mohanty G, Sahoo BK, Akhtar J (2015) Sensitivity parameter analysis of grapheme based bimetallic surface plasmon resonance biosensor. J Nano Res 34:17–21CrossRefGoogle Scholar
  28. 28.
    Shinohara S, Tanaka D, Okamoto K, Tamada K (2015) Colorimetric plasmon sensors with multilayered metallic nanoparticle sheets. Phys Chem Chem Phys 17:18606–18612CrossRefPubMedGoogle Scholar
  29. 29.
    Qazwini YA, Noor ASM, Yadav TK, Yaacob MH, Harun SW, Mahdi MA (2004) Performance evaluation of a bilayer SPR-based fiber optic RI sensor with TiO2 using FDTD solutions. Photonic Sens 4:289–294CrossRefGoogle Scholar
  30. 30.
    Gupta BD, Sharma AK (2005) Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. Sensors Actuators B Chem 107:40–46CrossRefGoogle Scholar
  31. 31.
    Peng W, Liang Y, Li L, Masson JF (2014) Metallic nanowire array-polymer hybrid film for surface plasmon resonance sensitivity enhancement and spectral range enlargement. Plasmonics 9:319–326CrossRefGoogle Scholar
  32. 32.
    Zhu Z, Feng M, Zuo L, Zhu Z, Wang F, Chen L, Li J, Shan G, Luo S (2015) An aptamer based surface plasmon resonance biosensor for the detection of ochratoxin A in wine and peanut oil. Biosens Bioelectron 65:320–326CrossRefPubMedGoogle Scholar
  33. 33.
    Patskovsky S, Kabashin AV, Meunier M, Luong JHT (2004) Near-infrared surface plasmon resonance sensing on a silicon platform. Sensors Actuators B Chem 97:409–414CrossRefGoogle Scholar
  34. 34.
    Liu B, Jiang Y, Zhu X, Tang X, Shi Y (2001) Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index. Opt Express 21:32349–32357CrossRefGoogle Scholar
  35. 35.
    Wang YJ, Meng SW, Liang YZ, Li LX, Peng W (2013) Fiber-optic surface plasmon resonance sensor with multi-alternating metal layers for biological measurement. Photonic Sens 3:202–207CrossRefGoogle Scholar
  36. 36.
    Piliarik M, Homola J (2009) Surface plasmon resonance (SPR) sensors: approaching their limits. Opt Express 17:16505–16517CrossRefPubMedGoogle Scholar
  37. 37.
    Lin HY, Huang CH, Cheng GL, Chen NK, Chui HC (2012) Tapered optical fiber sensor based on localized surface plasmon resonance. Opt Express 20:21693–21701CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mengdi Lu
    • 1
  • Yuzhang Liang
    • 1
  • Siyu Qian
    • 1
  • Lixia Li
    • 1
  • Zhenguo Jing
    • 1
  • Jean-Francois Masson
    • 2
  • Wei Peng
    • 1
    Email author
  1. 1.College of Physics and Optoelectronics EngineeringDalian University of TechnologyDalianChina
  2. 2.Departement de ChimieUniversité de MontréalMontrealCanada

Personalised recommendations